arterial flow
Recently Published Documents


TOTAL DOCUMENTS

501
(FIVE YEARS 59)

H-INDEX

34
(FIVE YEARS 3)

2022 ◽  
Vol 8 ◽  
Author(s):  
Annemarie Weissenbacher ◽  
John P. Stone ◽  
Maria Letizia Lo Faro ◽  
James P. Hunter ◽  
Rutger J. Ploeg ◽  
...  

Kidney transplantation is the best renal-replacement option for most patients with end-stage renal disease. Normothermic machine preservation (NMP) of the kidney has been studied extensively during the last two decades and implemented in clinical trials. Biomarker research led to success in identifying molecules with diagnostic, predictive and therapeutic properties in chronic kidney disease. However, perfusate biomarkers and potential predictive mechanisms in NMP have not been identified yet. Twelve discarded human kidneys (n = 7 DBD, n = 5 DCD) underwent NMP for up to 24 h. Eight were perfused applying urine recirculation (URC), four with replacement of urine (UR) using Ringer's lactate. The aim of our study was to investigate biomarkers (NGAL, KIM-1, and L-FABP), cells and cytokines in the perfusate in context with donor characteristics, perfusate hemodynamics and metabolic parameters. Cold ischemia time did not correlate with any of the markers. Perfusates of DBD kidneys had a significantly lower number of leukocytes after 6 h of NMP compared to DCD. Arterial flow, pH, NGAL and L-FABP correlated with donor creatinine and eGFR. Arterial flow was higher in kidneys with lower perfusate lactate. Perfusate TNF-α was higher in kidneys with lower arterial flow. The cytokines IL-1β and GM-CSF decreased during 6 h of NMP. Kidneys with more urine output had lower perfusate KIM-1 levels. Median and 6-h values of lactate, arterial flow, pH, NGAL, KIM-1, and L-FABP correlated with each other indicating a 6-h period being applicable for kidney viability assessment. The study results demonstrate a comparable cytokine and cell profile in perfusates with URC and UR. In conclusion, clinically available perfusate and hemodynamic parameters correlate well with donor characteristics and measured biomarkers in a discarded human NMP model.


Cells ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2616
Author(s):  
Kahdr A. Alatawi ◽  
Divyashree Ravishankar ◽  
Pabitra H. Patra ◽  
Alexander P. Bye ◽  
Alexander R. Stainer ◽  
...  

1,8-cineole, a monoterpenoid is a major component of eucalyptus oil and has been proven to possess numerous beneficial effects in humans. Notably, 1,8-cineole is the primary active ingredient of a clinically approved drug, Soledum® which is being mainly used for the maintenance of sinus and respiratory health. Due to its clinically valuable properties, 1,8-cineole has gained significant scientific interest over the recent years specifically to investigate its anti-inflammatory and antioxidant effects. However, the impact of 1,8-cineole on the modulation of platelet activation, thrombosis and haemostasis was not fully established. Therefore, in this study, we demonstrate the effects of 1,8-cineole on agonists-induced platelet activation, thrombus formation under arterial flow conditions and haemostasis in mice. 1,8-cineole largely inhibits platelet activation stimulated by glycoprotein VI (GPVI) agonists such as collagen and cross-linked collagen-related peptide (CRP-XL), while it displays minimal inhibitory effects on thrombin or ADP-induced platelet aggregation. It inhibited inside-out signalling to integrin αIIbβ3 and outside-in signalling triggered by the same integrin as well as granule secretion and intracellular calcium mobilisation in platelets. 1,8-cineole affected thrombus formation on collagen-coated surface under arterial flow conditions and displayed a minimal effect on haemostasis of mice at a lower concentration of 6.25 µM. Notably, 1,8-cineole was found to be non-toxic to platelets up to 50 µM concentration. The investigation on the molecular mechanisms through which 1,8-cineole inhibits platelet function suggests that this compound affects signalling mediated by various molecules such as AKT, Syk, LAT, and cAMP in platelets. Based on these results, we conclude that 1,8-cineole may act as a potential therapeutic agent to control unwarranted platelet reactivity under various pathophysiological settings.


2021 ◽  
Author(s):  
Khaled Elawady ◽  
Saqeb Beig Mirza

Compartment syndrome is a painful condition, caused by increased pressure in a closed muscular compartment. A compartment is a group of muscles enclosed in fascia and septa of connective tissue, which separates different muscle groups. The chambers created receive their blood supply through the arteries. As the pressure builds in the closed space, the blood supply to muscles enclosed decreases. Normal compartment pressure allows blood to flow in and then venous outflow to exit the compartment. However, with increased pressure in the compartment, the arterial flow is impaired. Subsequently, venous outflow stops, adding to the volume of the closed chamber, and hence, pressure builds to the point when the arterial flow stops as well. This chapter provides a general overview of the compartment syndrome in orthopaedic surgical practice. It includes definitions, causes, microscopic anatomy and pathophysiology, as well as the management of this condition.


Sign in / Sign up

Export Citation Format

Share Document