Sustained increases in heart rate induced by timed repetition of vagal stimulation in dogs

1985 ◽  
Vol 249 (4) ◽  
pp. H703-H709
Author(s):  
T. Yang ◽  
M. D. Jacobstein ◽  
M. N. Levy

We determined the influence of the "free-running cycle length" (tau FR) on chronotropic responses to one burst of right vagal stimuli per cardiac cycle in anesthetized dogs (tau FR, cycle length that prevailed in absence of right vagal stimulation). We varied tau FR by the following methods: 1) tonic left vagal stimulation in pentobarbital-anesthetized animals; 2) tonic left vagal stimulation plus sinus node cooling in pentobarbital-anesthetized animals; and 3) anesthesia with fentanyl, droperidol, and pentobarbital. When tau FR was less than a critical value [1,019 +/- 60 (SE) ms], right vagal stimulus bursts always had the expected negative chronotropic effect. However, when the tau FR was increased beyond critical value, right vagal stimulus bursts delivered within a specific portion of cardiac cycle actually had a positive chronotropic effect; i.e., cycle lengths diminished to values below tau FR. As tau FR was progressively increased beyond critical value, positive chronotropic response became greater and could be evoked by stimulus bursts delivered within a greater fraction of cardiac cycle. The right vagal stimuli that elicited the maximum positive chronotropic effect were those that were given approximately 235 ms prior to beginning of next atrial depolarization. This critical time probably occurs near the end of the period of phase 4 depolarization of sinus node automatic cells.

1990 ◽  
Vol 68 (10) ◽  
pp. 1363-1367 ◽  
Author(s):  
Don W. Wallick ◽  
Sherry L. Stuesse ◽  
Paul Martin

A brief electrical stimulation of the vagus nerve may elicit a triphasic response comprising (i) an initial prolongation of the same or the next cardiac cycle, (ii) a return of the subsequent cardiac cycle to about the level prior to vagal stimulation, and (iii) a secondary prolongation of cardiac cycle length that lasts several beats. We compared the effects of two calcium channel antagonists, verapamil and nifedipine, on this triphasic response to vagal stimulation in chloralose-anesthetized, open-chest dogs. In the absence of vagal stimulation, nifedipine (doses of 10, 40, and 50 μg/kg for a total dose of 100 μg/kg, i.v.) and verapamil (two doses of 100 μg/kg each, i.v.) increased the cardiac cycle length (A–A interval) by 16% (429 ± 20 to 496 ± 21 ms) and 29% (470 ± 33 to 605 ± 54 ms), respectively. Nifedipine (100 μg/kg total) attenuated the initial vagally mediated prolongation of the A–A interval, from 474 ± 19 to 369 ± 42 ms above the basal A–A interval. Following the initial prolongation of the vagal effect, other A–A intervals were not affected. In contrast, verapamil potentiated the vagally mediated initial prolongation in cardiac cycle length at the first dose administered (100 μg/kg) from 492 ± 17 to 561 ± 14 ms, but other increases in dosages had no further effect. Thus these two calcium channel antagonists have different effects on the sinoatrial chronotropic responses caused by brief vagal stimulation.Key words: autonomic control, parasympathetic, heart, calcium.


1979 ◽  
Vol 237 (3) ◽  
pp. H275-H281 ◽  
Author(s):  
D. W. Wallick ◽  
M. N. Levy ◽  
D. S. Felder ◽  
H. Zieske

A stable atrioventricular (AV) junctional rhythm was produced in open-chest dogs by injecting pentobarbital into the sinus node artery. When the cervical vagus nerves were stimulated repetitively, the junctional pacemaker cells tended to become synchronized with the vagal activity. During such synchronization, the junctional rate varied directly rather than inversely with the frequency of vagal stimulation. The magnitude of the chronotropic response depended on the timing of the vagal stimuli within the cardiac cycle. In 9 dogs, when the mean heart periods were plotted as a function of the R-st intervals (i.e., the time from the beginning of ventricular depolarization to the beginning of the stimulus burst), the mean heart periods varied from a maximum of 1,815 ms to a minimum of 1,160 ms, depending on the R-st interval. A small change in the R-st interval was capable of evoking a relatively large change in cycle length. Therefore, the impulses from various efferent vagal fibers to the AV junction must arrive almost synchronously, the released acetylcholine must be removed rapidly, and the sensitivity of the pacemaker cells to acetylcholine must change rapidly at some critical time during the cardiac cycle.


1990 ◽  
Vol 258 (1) ◽  
pp. H38-H44 ◽  
Author(s):  
A. S. Pickoff ◽  
A. Stolfi

The effects of tonic right and left vagal stimulation (RVS and LVS) on electrophysiological properties of the immature myocardium and specialized conduction system were evaluated in 11 neonatal canines pretreated with propranolol (1 mg/kg iv). Electrophysiological studies were performed by recording intracardiac electrograms from multiple endocardial catheters during programmed electrical stimulation. Assessments were made of sinus node function, intra-atrial, atrioventricular (AV) nodal and His-Purkinje conduction, and atrial and ventricular refractoriness in the control state and during RVS and LVS at 4–12 Hz. Vagal stimulation prolonged the sinus cycle length; RVS produced a 38% increase and LVS a 25% increase at 8 Hz (P less than 0.01). There were no changes in the intra-atrial or His-Purkinje conduction times. Comparable increases occurred during RVS and LVS in the paced cycle length resulting in AV nodal Wenckebach, the AV nodal conduction time at a paced cycle length of 340 ms, and the effective and functional refractory periods of the AV node, suggesting symmetrical influences of the right and left vagus on neonatal AV nodal function. Right atrial effective and functional refractory periods shortened significantly during vagal stimulation (ERP, 36% RVS and 23% LVS; FRP, 27% RVS and 15% LVS), and in 5 of 11 neonates, a sustained regular atrial tachyarrhythmia was induced during atrial extra-stimulation. Small yet significant increases were observed in the right ventricular ERP and FRP during vagal stimulation. This study provides information regarding the functional integrity of the parasympathetic nervous system and its potential role as a modulator of the electrophysiological properties of the newborn heart.(ABSTRACT TRUNCATED AT 250 WORDS)


1986 ◽  
Vol 64 (7) ◽  
pp. 954-957
Author(s):  
Don W. Wallick ◽  
Sherry L. Stuesse ◽  
Frank Valencic ◽  
Richard B. Fratianne

A brief burst of electrical stimuli delivered to the vagus nerve during the cardiac cycle elicits a triphasic cardiac chronotropic response. The cardiac cycle length initially increases, then briefly decreases, and subsequently increases again. We studied the effects of a calcium channel blocking agent, verapamil, on these responses to vagal stimulation during sinoatrial nodal rhythm in anesthetized, open-chest dogs. Verapamil increased the basal cardiac cycle length only slightly; however, the primary cardioinhibition was accentuated approximately 40% (from 396 to 555 ms) by verapamil. Neither the acceleratory phase of this triphasic response nor the secondary cardioinhibition was significantly affected by verapamil. These results indicate that verapamil potentiates the initial action of acetylcholine at the sinoatrial node when the vagus is activated with brief stimuli.


1981 ◽  
Vol 241 (6) ◽  
pp. H850-H856 ◽  
Author(s):  
S. L. Stuesse ◽  
D. W. Wallick ◽  
H. Zieske ◽  
M. N. Levy

Sympathetic stimulation both shortens the cardiac cycle and potentiates the cardiac response to vagal stimulation. In the present study the effects of sympathetic stimulation on the chronotropic responses of the heart to brief bursts of vagal stimulation were determined in open-chest anesthetized dogs. The sinoatrial nodal pacemaker cells demonstrate a paradoxical response to repetitive bursts of vagal stimuli over a certain portion of the cardiac cycle. That is, the cardiac cycle length does not increase but actually decreases as the vagal stimulation frequency is raised. Background levels of sympathetic stimulation do not significantly alter the range over which this “paradoxical” response occurs. Sympathetic stimulation decreases the cardiac chronotropic response to short bursts of vagal stimuli regardless of the time in the cardiac cycle that the stimulus is given; however, it does not decrease the time from the minimum vagal chronotropic response to the subsequent atrial depolarization although the total cardiac cycle is shortened. Since sympathetic stimulation shifts the overall temporal relationship between vagal stimulation and pacemaker response, small changes in sympathetic tone may greatly alter the cardiac response to phasic vagal stimulation if the vagal stimulus is given at certain times in the cardiac cycle.


1972 ◽  
Vol 50 (5) ◽  
pp. 381-388
Author(s):  
Victor Elharrar ◽  
Reginald A. Nadeau

The importance of the level of adrenergic tone in the determination of the dose–response curve to noradrenaline (NA) and in the evaluation of β-adrenergic blocking agents was studied in open-chest sodium pentobarbital anesthetized dogs by injecting drugs directly into the sinus node artery. Changes in the level of adrenergic tone by stimulating the right stellate ganglion resulted in variation of the observed chronotropic response to NA and of its ED50. The chronotropic responses were corrected by taking into account the underlying adrenergic tone. The negative chronotropic effect of dl-propranolol (1 and 10 μg) appeared to be related to its β-blocking properties and not to its quinidine-like effects as shown by the lack of effect of d-propranolol injected at the same doses. The magnitude of the negative chronotropic effects of 10 μg of propranolol and 100 μg of practolol, oxprenolol, and sotalol was shown to be related to the initial heart rate and consequently to the level of adrenergic tone. The comparison of these four β-blocking agents was carried out on corrected dose-response curves to NA. Their relative potencies were found to be: propranolol > oxprenolol > practolol > sotalol, corresponding to ratios of 1, [Formula: see text], [Formula: see text], and [Formula: see text]


1999 ◽  
Vol 90 (1) ◽  
pp. 60-65 ◽  
Author(s):  
Michael D. Sharpe ◽  
Daniel J. Cuillerier ◽  
John K. Lee ◽  
Magdi Basta ◽  
Andrew D. Krahn ◽  
...  

Background The effects of sevoflurane on the electrophysiologic properties of the human heart are unknown. This study evaluated the effects of sevoflurane on the electrophysiologic properties of the normal atrioventricular conduction system, and on the accessory pathways in patients with Wolff-Parkinson-White syndrome, to determine its suitability as an anesthetic agent for patients undergoing ablative procedures. Methods Fifteen patients with Wolff-Parkinson-White syndrome undergoing elective radiofrequency catheter ablation were studied. Anesthesia was induced with alfentanil (20-50 microg/kg) and midazolam (0.15 mg/kg), and vecuronium (20 mg) and maintained with alfentanil (0.5 to 2 microg x kg(-1) x min(-1)) and midazolam (1 or 2 mg every 10-15 min, as required). An electrophysiologic study measured the effective refractory period of the right atrium, atrioventricular node, and accessory pathway; the shortest conducted cycle length of the atrioventricular node and accessory pathway during atrial pacing; the effective refractory period of the right ventricle and accessory pathway; and the shortest retrograde conducted cycle length of the accessory pathway during ventricular pacing. Parameters of sinoatrial node function included sinus node recovery time, corrected sinus node recovery time, and sinoatrial conduction time. Intraatrial conduction time and the atrial-His interval were also measured. Characteristics of induced reciprocating tachycardia, including cycle length, atrial-His, His-ventricular, and ventriculoatrial intervals, also were measured. Sevoflurane was administered to achieve an end-tidal concentration of 2% (1 minimum alveolar concentration), and the study measurements were repeated. Results Sevoflurane had no effect on the electrophysiologic parameters of conduction in the normal atrioventricular conduction system or accessory pathway, or during reciprocating tachycardia. However, sevoflurane caused a statistically significant reduction in the sinoatrial conduction time and atrial-His interval but these changes were not clinically important. All accessory pathways were successfully identified and ablated. Conclusions Sevoflurane had no effect on the electrophysiologic nature of the normal atrioventricular or accessory pathway and no clinically important effect on sinoatrial node activity. It is therefore a suitable anesthetic agent for patients undergoing ablative procedures.


EP Europace ◽  
2021 ◽  
Vol 23 (Supplement_3) ◽  
Author(s):  
A Scridon ◽  
VB Halatiu ◽  
AI Balan ◽  
DA Cozac ◽  
GV Moldovan ◽  
...  

Abstract Funding Acknowledgements Type of funding sources: Public grant(s) – National budget only. Main funding source(s): This work was supported by a grant of the Romanian Ministry of Education and Research, CNCS - UEFISCDI Background The autonomic control of the pacemaker current, If, and the molecular mechanisms underlying parasympathetic If modulation are well understood. Conversely, the effects of chronic If blockade on the parasympathetic nervous system and on the heart rate (HR) response to acute parasympathetic changes are still largely unknown. Such interactions could significantly influence the course of patients undergoing chronic therapy with the If blocker ivabradine. Purpose We aimed to assess the effects of long-term If blockade using ivabradine on cardiac autonomic modulation and on the cardiovascular response to acute in vivo and in vitro parasympathetic stimulation. Methods Radiotelemetry ECG transmitters were implanted in 6 Control and 10 ivabradine-treated male Wistar rats (IVA; 3 weeks, 10 mg/kg/day); sympathetic and parasympathetic heart rate variability parameters were assessed. At the end of the study, the right atrium was removed and right atrial HCN(1-4) RNA expression levels were analyzed. The HR and systolic blood pressure (SBP) responses to in vivo electrical stimulation of the right vagus nerve (2–20 Hz) and the spontaneous sinus node discharge rate (SNDR) response to in vitro cholinergic receptors stimulation using carbamylcholine (10-9–10-6 mol/L) were assessed in 6 additional Control and 10 IVA rats. Results At the end of the study, mean 24-h HR was significantly lower in the IVA compared with the Control rats (301.3 ± 7.5 bpm vs. 341.5 ± 8.3 bpm; p< 0.01). Ivabradine administration led to a significant increase in vagal tone and shifted the sympatho-vagal balance towards vagal dominance (awake, asleep, and over 24-h; all p< 0.05). In the Control rats, in vivo vagus nerve stimulation induced a progressive decrease in both the SBP (p = 0.0001) and the HR (p< 0.0001). Meanwhile, in the IVA rats, vagal stimulation had no effect on the HR (p = 0.16) and induced a significantly lower drop in SBP (p< 0.05). Ivabradine-treated rats also presented a significantly lower SNDR drop in response to carbamylcholine (p< 0.01) and significantly higher HCN4 expression (p = 0.02). Conclusion Long-term If blockade using ivabradine caused a significant increase in vagal tone and shifted the autonomic balance towards vagal dominance in rats. Given the highly proarrhythmic effects of vagal activation at the atrial level, these findings could provide an explanation for the increased risk of atrial fibrillation associated with ivabradine use in clinical trials. In addition, ivabradine reduced the HR response to direct muscarinic receptors stimulation, canceled the cardioinhibitory response and blunted the hemodynamic response to in vivo vagal stimulation, and led to significant sinus node HCN4 up-regulation. These data suggest that ivabradine-induced HCN4 and the consequent If up-regulation could render the sinus node less sensitive to acute vagal inputs and could thus protect against excessive bradycardia induced by acute vagal activation.


1989 ◽  
Vol 256 (5) ◽  
pp. H1295-H1302
Author(s):  
S. A. Lang ◽  
M. N. Levy

We determined the effects of vagus nerve stimulation on cardiac cycle length and on ventricular contraction and relaxation in 18 chickens anesthetized with pentobarbital. Right vagus stimulation at a constant frequency of 35 Hz prolonged cycle length by 190%, whereas left vagus stimulation at the same frequency increased cycle length by 136%. When one burst of stimuli was delivered to the right vagus nerve each cardiac cycle, but the timing of the stimuli was changed within the cardiac cycle, the response of the avian pacemaker cells varied substantially with the timing of the stimuli. Right and left vagus stimulation at a constant frequency of 20 Hz depressed ventricular contraction by 62 +/- 6 and 52 +/- 6%, respectively, and depressed ventricular relaxation by 56 +/- 7 and 53 +/- 7%, respectively. These results indicate that in the chicken the chronotropic effects of right vagus stimulation are greater than those of left vagus stimulation, whereas right and left vagus stimulation are approximately equipotent on ventricular contraction and relaxation.


1991 ◽  
Vol 260 (2) ◽  
pp. H459-H464 ◽  
Author(s):  
S. Yamasaki ◽  
A. Stolfi ◽  
A. S. Pickoff

We studied the responses of sinus cycle length and atrioventricular (AV) nodal conduction to brief, critically timed vagal stimuli in 25 neonatal (9.6 +/- 3.1 days) canines. Vagal stimuli were delivered to the right or left decentralized cervical vagosympathetic trunk as either a single, brief stimulus train or a repetitive, phase-coupled train with both stimulation paradigms programmed to scan the entire cardiac cycle. The effects of brief vagal stimuli on cardiac cycle length were measured while the heart was beating spontaneously, and the vagal effects on AV nodal conduction were measured while the cycle length was held constant by atrial pacing at 300 ms. Neither changes in sinus cycle length nor AV nodal conduction demonstrated classical phase dependency, i.e., a gradual increase in the magnitude of the vagal response as stimuli are delivered progressively later in the cardiac cycle until the latency period (that point in the cardiac cycle at which vagal stimulation no longer affects the next cardiac cycle) is reached. Phase-response curves (PRCs) to single and repetitive stimuli typically exhibited either a flat response or a small decrease in magnitude as the latency period of the PRC was approached. Thus the neonatal sinus and AV node PRCs exhibit a different configuration than that reported in the adult.


Sign in / Sign up

Export Citation Format

Share Document