Mechanism of mechanical alternans in ischemia-reperfusion: role of deficient relaxation of the strong twitch

1995 ◽  
Vol 269 (1) ◽  
pp. H169-H175 ◽  
Author(s):  
O. N. Nwasokwa

We tested the hypothesis that impaired and incomplete relaxation of the strong twitch of mechanical alternans causes the peak force deficit (PFD) of the weak twitch and that, by decreasing the relaxation deficit (RD) of the strong twitch, dobutamine would diminish the PFD. We studied isometric twitches of the in situ blood-perfused canine papillary muscle (n = 8). To produce mechanical alternans, we paced the heart at 110-155 beats/min and decreased mean coronary perfusion pressure (MCPP) stepwise to produce ischemia and then increased it to produce reperfusion. We measured the RD and PFD and fit each curve of isometric force [F(t)] with the relation F(t) = F0 + C(t/A)Be1-(t/A)B, where F0 is force at twitch onset, to obtain the parameters A, B, and C. B is a dimensionless index of myocardial relaxation; it decreases with impaired (delayed) relaxation. At each MCPP, we averaged B for the strong and weak twitches. The PFD showed a positive correlation with the RD. At each MCPP, mean B was lower for the strong twitch than for the weak twitch, indicating impaired relaxation of the strong twitch. Dobutamine increased B from 1.83 +/- 0.14 to 2.12 +/- 0.16 (P = 0.00002) in the strong twitch and decreased B from 4.15 +/- 2.42 to 2.19 +/- 0.18 (P = 0.05) in the weak twitch. Dobutamine thus equalized the relaxation of the strong and weak twitches. Consequently it decreased the RD from 2.57 +/- 2.14 to 0.16 +/- 0.24 g (P = 0.01) and the PFD from 5.50 +/- 3.67 to 1.04 +/- 1.15 g (P = 0.01).(ABSTRACT TRUNCATED AT 250 WORDS)

1998 ◽  
Vol 275 (5) ◽  
pp. H1520-H1523 ◽  
Author(s):  
Miao-Xiang He ◽  
H. Fred Downey

The mechanism responsible for the abrupt fall in myocardial contractile function following coronary artery obstruction is unknown. The “vascular collapse theory” hypothesizes that the fall in coronary perfusion pressure after coronary artery obstruction is responsible for contractile failure during early ischemia. To test the role of vascular collapse in downregulating myocardial contractile force at the onset of ischemia, coronary flow of isolated rat hearts was abruptly decreased by 50, 70, 85, and 100% of baseline, and subsequent changes in coronary perfusion pressure and ventricular function were recorded at 0.5-s intervals. At 1.5 s after flow reductions ranging from 50 to 100%, decreases in contractile function did not differ, although perfusion pressure varied significantly from 45 ± 1 to 20 ± 2 mmHg. When function fell to 50% of baseline, perfusion pressures ranged from 35 ± 0.5 to 2.5 ± 1 mmHg for flow reductions ranging from 50 to 100%. Identical contractile function at widely differing coronary perfusion pressures is incompatible with the vascular collapse theory.


1992 ◽  
Vol 262 (4) ◽  
pp. H1231-H1237 ◽  
Author(s):  
T. P. Broten ◽  
E. O. Feigl

Myocardial oxygen (PO2) and carbon dioxide tensions (PCO2) are likely mediators of the local control of coronary blood flow. A previous study demonstrated that myocardial PO2 and PCO2, estimated by coronary venous values, interact synergistically to determine coronary flow. This synergistic relation was used in a prospective study to test the hypothesis that myocardial PO2 and PCO2 mediate changes in coronary vascular conductance during autoregulation. The left main coronary artery was pump perfused at controlled pressures in closed-chest anesthetized dogs. Autoregulation curves were obtained by increasing coronary perfusion pressure from 80 to 160 mmHg in 20-mm increments. Steady-state measurements of coronary venous PO2 and PCO2 and coronary conductance were obtained at each perfusion pressure. The coronary venous PO2 and PCO2 were used in the previously determined synergistic relation to predict the coronary vascular conductance during autoregulation. The predicted changes in coronary vascular conductance were compared with the actual changes in coronary vascular conductance for the pressure range of 80-160 mmHg. The data indicate that the synergistic interaction of oxygen and carbon dioxide accounts for approximately 23% of the change in coronary vascular conductance during autoregulation. These results suggest that other factors are also involved in autoregulation.


2017 ◽  
Vol 123 (4) ◽  
pp. 867-875 ◽  
Author(s):  
Niels Secher ◽  
Christian Lind Malte ◽  
Else Tønnesen ◽  
Leif Østergaard ◽  
Asger Granfeldt

Only one in ten patients survives cardiac arrest (CA), underscoring the need to improve CA management. Isoflurane has shown cardio- and neuroprotective effects in animal models of ischemia-reperfusion injury. Therefore, the beneficial effect of isoflurane should be tested in an experimental CA model. We hypothesize that isoflurane anesthesia improves short-term outcome following resuscitation from CA compared with a subcutaneous fentanyl/fluanisone/midazolam anesthesia. Male Sprague-Dawley rats were randomized to anesthesia with isoflurane ( n = 11) or fentanyl/fluanisone/midazolam ( n = 11). After 10 min of asphyxial CA, animals were resuscitated by mechanical chest compressions, ventilations, and epinephrine and observed for 30 min. Hemodynamics, including coronary perfusion pressure, systemic O2 consumption, and arterial blood gases, were recorded throughout the study. Plasma samples for endothelin-1 and cathecolamines were drawn before and after CA. Compared with fentanyl/fluanisone/midazolam anesthesia, isoflurane resulted in a shorter time to return of spontaneous circulation (ROSC), less use of epinephrine, increased coronary perfusion pressure during cardiopulmonary resusitation, higher mean arterial pressure post-ROSC, increased plasma levels of endothelin-1, and decreased levels of epinephrine. The choice of anesthesia did not affect ROSC rate or systemic O2 consumption. Isoflurane reduces time to ROSC, increases coronary perfusion pressure, and improves hemodynamic function, all of which are important parameters in CA models. NEW & NOTEWORTHY The preconditioning effect of volatile anesthetics in studies of ischemia-reperfusion injury has been demonstrated in several studies. This study shows the importance of anesthesia in experimental cardiac arrest studies as isoflurane raised coronary perfusion pressure during resuscitation, reduced time to return of spontaneous circulation, and increased arterial blood pressure in the post-cardiac arrest period. These effects on key outcome measures in cardiac arrest research are important in the interpretation of results from animal studies.


1992 ◽  
Vol 262 (1) ◽  
pp. H68-H77
Author(s):  
F. L. Abel ◽  
R. R. Zhao ◽  
R. F. Bond

Effects of ventricular compression on maximally dilated left circumflex coronary blood flow were investigated in seven mongrel dogs under pentobarbital anesthesia. The left circumflex artery was perfused with the animals' own blood at a constant pressure (63 mmHg) while left ventricular pressure was experimentally altered. Adenosine was infused to produce maximal vasodilation, verified by the hyperemic response to coronary occlusion. Alterations of peak left ventricular pressure from 50 to 250 mmHg resulted in a linear decrease in total circumflex flow of 1.10 ml.min-1 x 100 g heart wt-1 for each 10 mmHg of peak ventricular to coronary perfusion pressure gradient; a 2.6% decrease from control levels. Similar slopes were obtained for systolic and diastolic flows as for total mean flow, implying equal compressive forces in systole as in diastole. Increases in left ventricular end-diastolic pressure accounted for 29% of the flow changes associated with an increase in peak ventricular pressure. Doubling circumferential wall tension had a minimal effect on total circumflex flow. When the slopes were extrapolated to zero, assuming linearity, a peak left ventricular pressure of 385 mmHg greater than coronary perfusion pressure would be required to reduce coronary flow to zero. The experiments were repeated in five additional animals but at different perfusion pressures from 40 to 160 mmHg. Higher perfusion pressures gave similar results but with even less effect of ventricular pressure on coronary flow or coronary conductance. These results argue for an active storage site for systolic arterial flow in the dilated coronary system.


2021 ◽  
Vol 5 (3) ◽  
Author(s):  
Filippo Zilio ◽  
Simone Muraglia ◽  
Roberto Bonmassari

Abstract Background A ‘catecholamine storm’ in a case of pheochromocytoma can lead to a transient left ventricular dysfunction similar to Takotsubo cardiomyopathy. A cardiogenic shock can thus develop, with high left ventricular end-diastolic pressure and a reduction in coronary perfusion pressure. This scenario can ultimately lead to a cardiac arrest, in which unloading the left ventricle with a peripheral left ventricular assist device (Impella®) could help in achieving the return of spontaneous circulation (ROSC). Case summary A patient affected by Takotsubo cardiomyopathy caused by a pheochromocytoma presented with cardiogenic shock that finally evolved into refractory cardiac arrest. Cardiopulmonary resuscitation was performed but ROSC was achieved only after Impella® placement. Discussion In the clinical scenario of Takotsubo cardiomyopathy due to pheochromocytoma, when cardiogenic shock develops treatment is difficult because exogenous catecholamines, required to maintain organ perfusion, could exacerbate hypertension and deteriorate the cardiomyopathy. Moreover, as the coronary perfusion pressure is critically reduced, refractory cardiac arrest could develop. Although veno-arterial extra-corporeal membrane oxygenation (va-ECMO) has been advocated as the treatment of choice for in-hospital refractory cardiac arrest, in the presence of left ventricular overload a device like Impella®, which carries fewer complications as compared to ECMO, could be effective in obtaining the ROSC by unloading the left ventricle.


Sign in / Sign up

Export Citation Format

Share Document