cAMP induces heme oxygenase-1 gene expression and carbon monoxide production in vascular smooth muscle

1997 ◽  
Vol 273 (1) ◽  
pp. H317-H323 ◽  
Author(s):  
W. Durante ◽  
N. Christodoulides ◽  
K. Cheng ◽  
K. J. Peyton ◽  
R. K. Sunahara ◽  
...  

Recent studies indicate that vascular smooth muscle cells generate carbon monoxide (CO) via the action of heme oxygenase (HO). Because adenosine 3',5'-cyclic monophosphate (cAMP) is an important intracellular signaling molecule in the regulation of vascular cell function, we examined whether this second messenger modulates the expression of HO and the production of CO by rat aortic smooth muscle cells. Treatment of smooth muscle cells with the membrane-permeable cAMP derivative dibutyryl cAMP or with compounds that increase intracellular cAMP levels (isoproterenol and forskolin) resulted in a concentration- and time-dependent increase in the levels of HO-1 mRNA and protein, whereas the expression of HO-2 remained unchanged. Both actinomycin D and cycloheximide blocked the basal expression of HO-1 mRNA and protein and prevented the cAMP-mediated induction of HO-1. Incubation of platelets with cAMP-treated smooth muscle cells resulted in a significant increase in platelet cGMP concentration that was partially reversed by treatment of smooth muscle cells with the nitric oxide synthase inhibitor NG-monomethyl-L-arginine or the HO blocker zinc protoporphyrin-IX. However, the combined addition of these two inhibitors to cAMP-treated smooth muscle cells or the addition of the CO and NO scavenger hemoglobin to platelets completely blocked the stimulatory effect on platelet cGMP levels. These results demonstrate that cAMP induces the expression of the HO-1 gene and stimulates the formation of CO and NO in vascular smooth muscle cells. The capacity of cAMP to induce the synthesis of guanylate cyclase-stimulatory CO from smooth muscle cells may represent a novel mechanism by which this nucleotide regulates vascular tone.

1997 ◽  
Vol 80 (4) ◽  
pp. 557-564 ◽  
Author(s):  
William Durante ◽  
Michael H. Kroll ◽  
Nick Christodoulides ◽  
Kelly J. Peyton ◽  
Andrew I. Schafer

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Po-Len Liu ◽  
Jung-Tung Liu ◽  
Hsuan-Fu Kuo ◽  
Inn-Wen Chong ◽  
Chong-Chao Hsieh

Proliferation of vascular smooth muscle cells (VSMCs) triggered by inflammatory stimuli and oxidative stress contributes importantly to atherogenesis. The association of green tea consumption with cardiovascular protection has been well documented in epidemiological observations, however, the underlying mechanisms remain unclear. This study aimed to elucidate the effects of the most active green tea catechin derivative, (−)-epigallocatechin-3-gallate (EGCG), in human aortic smooth muscle cells (HASMCs), focusing particularly on the role of a potent anti-inflammatory and antioxidative enzyme heme oxygenase-1 (HO-1). We found that pretreatment of EGCG dose- and time-dependently induced HO-1 protein levels in HASMCs. EGCG inhibited interleukin- (IL-)1β-induced HASMC proliferation and oxidative stress in a dose-dependent manner. The HO-1 inducer CoPPIX decreased IL-1β-induced cell proliferation, whereas the HO-1 enzyme inhibitor ZnPPIX significantly reversed EGCG-caused growth inhibition in IL-1β-treated HASMCs. At the molecular level, EGCG treatment significantly activated nuclear factor erythroid-2-related factor (Nrf2) transcription activities. These results suggest that EGCG might serve as a complementary and alternative medicine in the treatment of these pathologies by inducing HO-1 expression and subsequently decreasing VSMC proliferation.


2013 ◽  
Vol 230 (2) ◽  
pp. 406-413 ◽  
Author(s):  
Gabriel Stulnig ◽  
Marie-Therese Frisch ◽  
Slaven Crnkovic ◽  
Philipp Stiegler ◽  
Michael Sereinigg ◽  
...  

2010 ◽  
Vol 31 (6) ◽  
pp. 679-686 ◽  
Author(s):  
Xiao-chun Li ◽  
Guo-xin Tong ◽  
Yu Zhang ◽  
Shan-xin Liu ◽  
Qi-hui Jin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document