Dissociation of muscle sympathetic nerve activity and leg vascular resistance in humans

2000 ◽  
Vol 279 (3) ◽  
pp. H1215-H1219 ◽  
Author(s):  
J. Kevin Shoemaker ◽  
Michael D. Herr ◽  
Lawrence I. Sinoway

We examined the hypothesis that the increase in inactive leg vascular resistance during forearm metaboreflex activation is dissociated from muscle sympathetic nerve activity (MSNA). MSNA (microneurography), femoral artery mean blood velocity (FAMBV, Doppler), mean arterial pressure (MAP), and heart rate (HR) were assessed during fatiguing static handgrip exercise (SHG, 2 min) followed by posthandgrip ischemia (PHI, 2 min). Whereas both MAP and MSNA increase during SHG, the transition from SHG to PHI is characterized by a transient reduction in MAP but sustained elevation in MSNA, facilitating separation of these factors in vivo. Femoral artery vascular resistance (FAVR) was calculated (MAP/MBV). MSNA increased by 59 ± 20% above baseline during SHG ( P < 0.05) and was 58 ± 18 and 78 ± 18% above baseline at 10 and 20 s of PHI, respectively ( P < 0.05 vs. baseline). Compared with baseline, FAVR increased 51 ± 22% during SHG ( P < 0.0001) but returned to baseline levels during the first 30 s of PHI, reflecting the changes in MAP ( P < 0.005) and not MSNA. It was concluded that control of leg muscle vascular resistance is sensitive to changes in arterial pressure and can be dissociated from sympathetic factors.

2019 ◽  
Vol 316 (3) ◽  
pp. H734-H742 ◽  
Author(s):  
Daniel E. Mansur ◽  
Monique O. Campos ◽  
João D. Mattos ◽  
Adrielle C. S. Paiva ◽  
Marcos P. Rocha ◽  
...  

Peripheral venous distension mechanically stimulates type III/IV sensory fibers in veins and evokes pressor and sympathoexcitatory reflex responses in humans. As young women have reduced venous compliance and impaired sympathetic transduction, we tested the hypothesis that pressor and sympathoexcitatory responses to venous distension may be attenuated in women compared with men. Mean arterial pressure (photoplethysmography), heart rate (HR), stroke volume (SV; Modelflow), cardiac output (CO = HR × SV), muscle sympathetic nerve activity (MSNA), femoral artery blood flow, and femoral artery conductance (Doppler ultrasound) were quantified in eight men (27 ± 4 yr) and nine women (28 ± 4 yr) before [control (CON)], during (INF), and immediately after (post-INF) a local infusion of saline [5% of the total forearm volume (30 ml/min); the infusion time was 2 ± 1 and 1 ± 1 min ( P = 0.0001) for men and women, respectively] through a retrograde catheter inserted into an antecubital vein, to which venous drainage and arterial supply had been occluded. Mean arterial pressure increased during and after infusion in both groups (vs. the CON group, P < 0.05), but women showed a smaller pressor response in the post-INF period (Δ+7.2 ± 2.0 vs. Δ+18.3 ± 3.9 mmHg in men, P = 0.019). MSNA increased and femoral artery conductance decreased similarly in both groups (vs. the CON group, P < 0.05) at post-INF. Although HR changes were similar, increases in SV (Δ+20.4 ± 8.6 vs. Δ+2.6 ± 2.7 ml, P = 0.05) and CO (Δ+0.84 ± 0.17 vs. Δ+0.34 ± 0.10 l/min, P = 0.024) were greater in men compared with women. Therefore, venous distension evokes a smaller pressor response in young women due to attenuated cardiac adjustments rather than reduced venous compliance or sympathetic transduction. NEW & NOTEWORTHY We found that the pressor response to venous distension was attenuated in young women compared with age-matched men. This was due to attenuated cardiac adjustments rather than reduced venous compliance, sympathetic activation, or impaired transduction and vascular control. Collectively, these findings suggest that an attenuated venous distension reflex could be involved in orthostatic intolerance in young women.


2001 ◽  
Vol 281 (1) ◽  
pp. H371-H375 ◽  
Author(s):  
Virginia A. Imadojemu ◽  
Mary E. J. Lott ◽  
Kevin Gleeson ◽  
Cynthia S. Hogeman ◽  
Chester A. Ray ◽  
...  

We measured brachial and femoral artery flow velocity in eight subjects and peroneal and median muscle sympathetic nerve activity (MSNA) in five subjects during tilt testing to 40°. Tilt caused similar increases in MSNA in the peroneal and median nerves. Tilt caused a fall in femoral artery flow velocity, whereas no changes in flow velocity were seen in the brachial artery. Moreover, with tilt, the increase in the vascular resistance employed (blood pressure/flow velocity) was greater and more sustained in the leg than in the arm. The ratio of the percent increase in vascular resistance in leg to arm was 2.5:1. We suggest that the greater vascular resistance effects in the leg were due to an interaction between sympathetic nerve activity and the myogenic response.


1989 ◽  
Vol 67 (1) ◽  
pp. 250-255 ◽  
Author(s):  
J. P. Fluckiger ◽  
G. Gremaud ◽  
B. Waeber ◽  
A. Kulik ◽  
A. Ichino ◽  
...  

A new system was developed in our laboratory to continuously monitor intra-arterial pressure, heart rate, and sympathetic nerve activity in unanesthetized rats. The animals were prepared 24 h before the start of the experiments. Sympathoneural traffic was measured at the level of splanchnic nerve. The amplitude of the spikes recorded at this level was utilized to express sympathetic nerve activity. The amplitude of the residual electroneurogram signal present 30 min after the rats were killed was 32 +/- 2 mV (mean +/- SE; n = 11). For analysis, these background values were subtracted from values determined in vivo. The nerve we studied contains postganglionic fibers, since electrical activity decreased in response to ganglionic blockade with pentolinium (1.25 mg/min iv for 4 min). The amplitude of spikes fell by 43 +/- 4% (n = 4). Sympathetic nerve activity was highly reproducible at a 24-h interval (104 +/- 26 vs. 111 +/- 27 mV for the amplitude of spikes; n = 11). Dose-response curves to the alpha 1-stimulant methoxamine and to bradykinin were established in four rats. The increase in blood pressure induced by methoxamine caused a dose-dependent fall in sympathetic nerve activity, whereas the blood pressure reduction resulting from bradykinin was associated with a dose-dependent activation of sympathetic drive. These data therefore indicate that it is possible with out system to accurately measure sympathetic nerve activity in the awake rat, together with intra-arterial pressure and heart rate.


2005 ◽  
Vol 98 (1) ◽  
pp. 343-349 ◽  
Author(s):  
Renaud Tamisier ◽  
Amit Anand ◽  
Luz M. Nieto ◽  
David Cunnington ◽  
J. Woodrow Weiss

Sustained and episodic hypoxic exposures lead, by two different mechanisms, to an increase in ventilation after the exposure is terminated. Our aim was to investigate whether the pattern of hypoxia, cyclic or sustained, influences sympathetic activity and hemodynamics in the postexposure period. We measured sympathetic activity (peroneal microneurography), hemodynamics [plethysmographic forearm blood flow (FBF), arterial pressure, heart rate], and peripheral chemosensitivity in normal volunteers on two occasions during and after 2 h of either exposure. By design, mean arterial oxygen saturation was lower during sustained relative to cyclic hypoxia. Baseline to recovery muscle sympathetic nerve activity and blood pressure went from 15.7 ± 1.2 to 22.6 ± 1.9 bursts/min ( P < 0.01) and from 85.6 ± 3.2 to 96.1 ± 3.3 mmHg ( P < 0.05) after sustained hypoxia, respectively, but did not exhibit significant change from 13.6 ± 1.5 to 17.3 ± 2.5 bursts/min and 84.9 ± 2.8 to 89.8 ± 2.5 mmHg after cyclic hypoxia. A significant increase in FBF occurred after sustained, but not cyclic, hypoxia, from 2.3 ± 0.2 to 3.29 ± 0.4 and from 2.2 ± 0.1 to 3.1 ± 0.5 ml·min−1·100 g of tissue−1, respectively. Neither exposure altered the ventilatory response to progressive isocapnic hypoxia. Two hours of sustained hypoxia increased not only muscle sympathetic nerve activity but also arterial blood pressure. In contrast, cyclic hypoxia produced slight but not significant changes in hemodynamics and sympathetic activity. These findings suggest the cardiovascular response to acute hypoxia may depend on the intensity, rather than the pattern, of the hypoxic exposure.


1996 ◽  
Vol 270 (6) ◽  
pp. H1963-H1971 ◽  
Author(s):  
D. A. Scheuer ◽  
V. S. Bishop

Arginine vasopressin (AVP) has been shown to increase the inhibitory influence of the baroreflex on sympathetic nerve activity by a mechanism involving receptors located in the area postrema. The purpose of these experiments was to study the functional effect of this action of AVP by testing the hypothesis that AVP can buffer its own vasoconstrictor effect by facilitating baroreflex-mediated withdrawal of sympathetic nerve activity. Specifically, we determined 1) if AVP can attenuate increases in hindquarter vascular resistance during the infusion of another vasoconstrictor, phenylephrine, and 2) whether the effects of AVP on vascular resistance are associated with appropriate corresponding changes in lumbar sympathetic nerve activity (LSNA). In pentobarbital-anesthetized New Zealand White rabbits the baroreflex was stimulated by phenylephrine-induced elevations in arterial pressure. Baroreflex-mediated changes in heart rate (HR), calculated hindquarter vascular resistance index (R), and LSNA were determined during the simultaneous intravertebral infusion of AVP (0, 0.5, or 1.0 ng.kg-1, min-1). Intravertebral infusion of AVP alone had no effect on resting mean arterial pressure (MAP) but reduced baseline values for LSNA and HR. Intravenous infusion of phenylephrine alone produced dose-dependent increases in MAP and R and decreases in LSNA and HR. The simultaneous infusion of AVP (0.5 or 1.0 ng.kg-1 min-1) and phenylephrine (1.25, 2.5, 5.0, 7.5, and 10.0 micrograms.kg-1.min-1) had no effect on the increase in MAP but attenuated the increases in R and facilitated the reductions in LSNA at all doses of phenylephrine. The higher dose of AVP also enhanced the phenylephrine-induced reductions in HR. In contrast, the intravenous infusion of AVP (1.0 ng.kg-1.min-1) did not alter baroreflex-mediated changes in R, LSNA, or HR. Therefore, we conclude that the action of AVP to increase baroreflex-mediated sympathoinhibition results in an attenuated rise in hindquarter vascular resistance during the infusion of another vasoconstrictor, phenylephrine.


1995 ◽  
Vol 269 (1) ◽  
pp. H153-H159
Author(s):  
M. L. Smith ◽  
K. A. Ellenbogen ◽  
D. L. Eckberg

The seconds to minutes before sudden cardiac death are characterized by fluctuations of arterial pressure, cardiac rhythm, and probably sympathetic nerve activity. We explored the interrelations among these factors in seven patients undergoing clinical electrophysiological testing. We measured muscle sympathetic nerve activity (SNA) and arterial pressure responses to ventricular premature beats induced throughout the cardiac cycle under three conditions: 1) lowered arterial pressure and elevated SNA produced by intravenous nitroprusside, 2) baseline arterial pressure and SNA during saline infusion, and 3) elevated arterial pressure and decreased SNA activity produced by intravenous phenylephrine. Sympathetic responses to premature beats were inversely related to diastolic pressure. The magnitude of the sympathetic response was directly related to the prevailing arterial pressure and inversely related to baseline SNA. These data demonstrate that sympathoexcitation evoked by ventricular dysrhythmias is determined importantly by the prevailing arterial pressure and possibly by the background R-R interval and level of sympathetic activity. This effect may influence hemodynamic and electrophysiological stability during dysrhythmias.


1998 ◽  
Vol 274 (4) ◽  
pp. H1211-H1217 ◽  
Author(s):  
Akio Nakata ◽  
Shigeo Takata ◽  
Toyoshi Yuasa ◽  
Atsuhiro Shimakura ◽  
Michiro Maruyama ◽  
...  

We investigated the frequency components of fluctuations in heart rate, arterial pressure, respiration, and muscle sympathetic nerve activity (MSNA) in 11 healthy women using an autoregressive model and examined the relation among variables using Akaike’s relative power contribution analysis with multivariate autoregressive model fitting. Power spectral analysis of MSNA revealed two peaks, with low-frequency (LF) and high-frequency (HF) components. The LF component of MSNA was a major determinant of the LF component of arterial pressure and R-R interval variability (0.70 ± 0.07 and 0.18 ± 0.05, respectively). The effect of the LF component of MSNA on arterial pressure showed no change in response to propranolol but was diminished (0.35 ± 0.08) by phentolamine ( P < 0.02). The effect of the LF component of MSNA on R-R interval was not altered by pharmacological sympathetic nerve blockade. The HF component of MSNA did not influence other variables but was influenced by R-R interval, arterial pressure, and respiration. These findings indicate that the LF component of MSNA reflects autonomic oscillations, whereas the HF component is passive and influenced by other cardiovascular variables.


Sign in / Sign up

Export Citation Format

Share Document