Relationship between fatigue sensation in active muscles and muscle sympathetic nerve activity during static handgrip exercise

1989 ◽  
Vol 29 (1) ◽  
pp. 66-67
2004 ◽  
Vol 10 (5) ◽  
pp. S167
Author(s):  
Hisayoshi Murai ◽  
Takata Shigeo ◽  
Furushou Hiroshi ◽  
Maruyama Micchirou ◽  
Takamura Masayuki ◽  
...  

1991 ◽  
Vol 260 (3) ◽  
pp. E379-E388 ◽  
Author(s):  
P. A. Farrell ◽  
T. J. Ebert ◽  
J. P. Kampine

The influence of an endogenous opioid peptide (EOP) antagonist (naloxone, 1.2 mg iv bolus) on muscle sympathetic nerve activity (MSNA, microneurography) was studied on 19 young male and female volunteers. Isometric handgrip, cold pressor test, and acute baroreceptor unloading with sodium nitroprusside (autonomic stresses) were carried out under two conditions, one group (n = 11) before (control responses) and after naloxone and another group (n = 8) before and after placebo saline. Monitored cardiovascular variables included heart rate, central venous pressure (jugular vein catheter), arterial blood pressure (radial artery catheter), circulating catecholamines, and forearm blood flow. At rest, cardiovascular variables and MSNA were not affected by either naloxone or saline. MSNA (total activity = burst frequency x burst amplitude/100 cardiac cycles) increased during isometric handgrip to a greater extent (30 +/- 6 vs. 16 +/- 5 arbitrary units) after naloxone compared with control trials (P less than 0.05). After naloxone, arterial systolic and diastolic blood pressures were higher during handgrip exercise. These augmented arterial pressures and MSNA responses were not evident during either the cold pressor test or the sodium nitroprusside stress. These data suggest that isometric muscle contraction elicits a sympathetic neural response that may be modified by EOP. This interaction is not evident during two other stresses, when sympathetic responses are equal to or greater than those provoked by isometric handgrip exercise.


2009 ◽  
Vol 587 (11) ◽  
pp. 2613-2622 ◽  
Author(s):  
Hisayoshi Murai ◽  
Masayuki Takamura ◽  
Michirou Maruyama ◽  
Manabu Nakano ◽  
Tatsunori Ikeda ◽  
...  

2000 ◽  
Vol 279 (3) ◽  
pp. H1215-H1219 ◽  
Author(s):  
J. Kevin Shoemaker ◽  
Michael D. Herr ◽  
Lawrence I. Sinoway

We examined the hypothesis that the increase in inactive leg vascular resistance during forearm metaboreflex activation is dissociated from muscle sympathetic nerve activity (MSNA). MSNA (microneurography), femoral artery mean blood velocity (FAMBV, Doppler), mean arterial pressure (MAP), and heart rate (HR) were assessed during fatiguing static handgrip exercise (SHG, 2 min) followed by posthandgrip ischemia (PHI, 2 min). Whereas both MAP and MSNA increase during SHG, the transition from SHG to PHI is characterized by a transient reduction in MAP but sustained elevation in MSNA, facilitating separation of these factors in vivo. Femoral artery vascular resistance (FAVR) was calculated (MAP/MBV). MSNA increased by 59 ± 20% above baseline during SHG ( P < 0.05) and was 58 ± 18 and 78 ± 18% above baseline at 10 and 20 s of PHI, respectively ( P < 0.05 vs. baseline). Compared with baseline, FAVR increased 51 ± 22% during SHG ( P < 0.0001) but returned to baseline levels during the first 30 s of PHI, reflecting the changes in MAP ( P < 0.005) and not MSNA. It was concluded that control of leg muscle vascular resistance is sensitive to changes in arterial pressure and can be dissociated from sympathetic factors.


Diabetes ◽  
1993 ◽  
Vol 42 (3) ◽  
pp. 375-380 ◽  
Author(s):  
R. P. Hoffman ◽  
C. A. Sinkey ◽  
M. G. Kienzle ◽  
E. A. Anderson

Sign in / Sign up

Export Citation Format

Share Document