scholarly journals Inhaled carbon monoxide does not cause pulmonary vasodilation in the late-gestation fetal lamb

2000 ◽  
Vol 278 (4) ◽  
pp. L779-L784 ◽  
Author(s):  
Theresa R. Grover ◽  
Robyn L. Rairigh ◽  
Jeanne P. Zenge ◽  
Steven H. Abman ◽  
John P. Kinsella

As observed with nitric oxide (NO), carbon monoxide (CO) binds and may activate soluble guanylate cyclase and increase cGMP levels in smooth muscle cells in vitro. Because inhaled NO (INO) causes potent and sustained pulmonary vasodilation, we hypothesized that inhaled CO (ICO) may have similar effects on the perinatal lung. To determine whether ICOcan lower pulmonary vascular resistance (PVR) during the perinatal period, we studied the effects of ICOon late-gestation fetal lambs. Catheters were placed in the main pulmonary artery, left pulmonary artery (LPA), aorta, and left atrium to measure pressure. An ultrasonic flow transducer was placed on the LPA to measure blood flow to the left lung. After baseline measurements, fetal lambs were mechanically ventilated with a hypoxic gas mixture (inspired O2fraction < 0.10) to maintain a constant fetal arterial [Formula: see text]. After 60 min (baseline), the lambs were treated with ICO[5–2,500 parts/million (ppm)]. Comparisons were made with INO(5 and 20 ppm) and combined INO(5 ppm) and ICO(100 and 2,500 ppm). We found that ICOdid not alter left lung blood flow or PVR at any of the study doses. In contrast, low-dose INOdecreased PVR by 47% ( P < 0.005). The combination of INOand ICOdid not enhance the vasodilator response to INO. To determine whether endogenous CO contributes to vascular tone in the fetal lung, zinc protoporphyrin IX, an inhibitor of heme oxygenase, was infused into the LPA in three lambs. Zinc protoporphyrin IX had no effect on baseline PVR, aortic pressure, or the pressure gradient across the ductus arteriosus. We conclude that ICOdoes not cause vasodilation in the near-term ovine transitional circulation, and endogenous CO does not contribute significantly to baseline pulmonary vascular tone or ductus arteriosus tone in the late-gestation ovine fetus.

1996 ◽  
Vol 81 (6) ◽  
pp. 2481-2487 ◽  
Author(s):  
D. Dunbar Ivy ◽  
John P. Kinsella ◽  
Steven H. Abman

Ivy, D. Dunbar, John P. Kinsella, and Steven H. Abman.Endothelin blockade augments pulmonary vasodilation in the ovine fetus. J. Appl. Physiol. 81(6): 2481–2487, 1996.—The physiological role of endothelin-1 (ET-1) in regulation of vascular tone in the perinatal lung is controversial. Recent studies suggest that ET-1 contributes to high basal pulmonary vascular resistance in the normal fetus, but its role in the modulation of pulmonary vascular tone remains uncertain. We hypothesized that high ET-1 activity opposes the vasodilator response to some physiological stimuli such as increased pressure. To test the hypothesis that ET-1 modulates fetal pulmonary vascular responses to acute and prolonged physiological stimuli, we performed a series of experiments in the late-gestation ovine fetus. We studied the hemodynamic effects of two ET-1 antagonists, BQ-123 (a selective ETA-receptor antagonist) and phosphoramidon (a nonselective ET-1-converting enzyme inhibitor) during mechanical increases in pressure due to partial ductus arteriosus compression in chronically prepared late-gestation fetal lambs. In control studies, partial ductus arteriosus compression decreased the ratio of pulmonary arterial pressure to pulmonary artery flow in the left lung 34 ± 6% from baseline. Intrapulmonary infusions of BQ-123 (0.5 μg/min for 10 min; 0.025 μg/min for 2 h) or phosphoramidon (1.0 mg/min for 10 min) augmented the peak vasodilator response during ductus arteriosus compression (52 ± 3 and 49 ± 6% from baseline, respectively, P < 0.05 vs. control). In addition, unlike the transient vasodilator response to ductus arteriosus compression in control studies, ET-1 blockade with BQ-123 or phosphoramidon prolonged the increase in flow caused by ductus arteriosus compression. In summary, ETA-receptor blockade and ET-1-converting enzyme inhibition augment and prolong fetal pulmonary vasodilation during partial compression of the ductus arteriosus. We conclude that ET-1 activity modulates acute and prolonged responses of the fetal pulmonary circulation to changes in vascular pressure. We speculate that ET-1 contributes to regulation and maintenance of high pulmonary vascular resistance in the normal ovine fetal lung.


2001 ◽  
Vol 281 (1) ◽  
pp. H298-H307 ◽  
Author(s):  
Nikki L. Jernigan ◽  
Theresa L. O'Donaughy ◽  
Benjimen R. Walker

Rats exposed to chronic hypoxia (CH; 4 wk at 0.5 atm) exhibit attenuated renal vasoconstrictor reactivity to phenylephrine (PE). Preliminary studies from our laboratory suggest that this response is mediated by hypoxic induction of heme oxygenase (HO) and subsequent release of the endogenous vasodilator carbon monoxide. Because vascular HO mRNA is increased within hours of hypoxic exposure, we hypothesized that the onset of reduced reactivity may occur fairly rapidly and correlate with HO expression. Therefore, we examined the onset of attenuated vasoconstriction on CH exposure as well as the duration of hyporeactivity on return to a normoxic environment. Renal vascular resistance (RVR) responses to graded intravenous infusion of PE were measured in conscious rats under control conditions and after 24 h, 48 h, and 4 wk of CH exposure. Vasoreactivity responses were also determined in 4-wk CH rats 1, 5, 24, and 96 h after return to normoxia. We found that RVR responses to PE were significantly blunted after 48 h and 4 wk but not after 24 h of hypoxic exposure. Inhibition of HO with zinc protoporphyrin IX increased RVR and decreased renal blood flow in 48-h CH rats but not controls. Although reactivity to PE was gradually restored after 4 wk of CH, responsiveness was still slightly blunted at 96 h after return to normoxia. Western blot analysis demonstrated a correlation between HO-1 protein levels and attenuated vasoconstrictor response in CH and posthypoxic rats. These data suggest that the onset and offset of physiologically relevant vascular HO expression occur within 2–3 days.


1992 ◽  
Vol 263 (5) ◽  
pp. H1363-H1368 ◽  
Author(s):  
D. N. Cornfield ◽  
J. A. McQueston ◽  
I. F. McMurtry ◽  
D. M. Rodman ◽  
S. H. Abman

To study the potential role of ATP-sensitive K+ (K+ATP) channels in fetal pulmonary vasoregulation, we studied the effect of a K+ATP channel agonist, lemakalim, and antagonist, glibenclamide, on the fetal pulmonary circulation in nine chronically instrumented late-gestation fetal lambs. Left pulmonary artery (LPA) blood flow was measured with an electromagnetic flow transducer. Brief (10 min) infusions of lemakalim at 3, 10, and 30 micrograms/min into the LPA produced dose-dependent increases in flow from 68 +/- 7 to 96 +/- 11, 160 +/- 15, and 204 +/- 34 ml/min, respectively. The duration of pulmonary vasodilation after the 10-min infusions of lemakalim at 3, 10, and 30 micrograms/min was 20 +/- 3, 47 +/- 10, and 55 +/- 15 min, respectively. Pulmonary blood pressure and flow did not change with intrapulmonary infusion of glibenclamide (10 mg), a K+ATP channel antagonist. Lemakalim-induced pulmonary vasodilation was not affected by nitro-L-arginine (10 mg), a competitive inhibitor of endothelium-dependent relaxing factor, but was blocked by glibenclamide. Prolonged (2 h) intrapulmonary infusions of lemakalim (2-6 micrograms/min) increased pulmonary blood flow by 137%. The increase in pulmonary blood flow was sustained throughout the infusion. Systemic and pulmonary arterial pressures decreased during prolonged infusion. We conclude that K+ATP channels are present in the fetal pulmonary circulation, but do not participate in the regulation of basal pulmonary vascular tone. K+ATP channel activation produces sustained vasodilation that is not mediated by endothelium-derived relaxing factor. We speculate that birth-related stimuli activate K+ATP channels to enhance the pulmonary vasodilation that occurs at birth.


1993 ◽  
Vol 264 (3) ◽  
pp. H865-H871 ◽  
Author(s):  
J. A. McQueston ◽  
D. N. Cornfield ◽  
I. F. McMurtry ◽  
S. H. Abman

To determine whether L-arginine, the precursor of endothelium-derived relaxing factor (EDRF), increases vasodilator activity in the fetal pulmonary circulation, we studied its effects on basal pulmonary vascular tone and on pulmonary vasodilation stimulated by oxygen and acetylcholine (ACh) in chronically prepared late-gestation fetal lambs. L-Arginine infusion (30–300 mg over 10 min) into the left pulmonary artery (LPA) increased blood flow (18–57%) without changing pulmonary artery pressure. To determine whether O2-induced vasodilation involves EDRF and is augmented by L-arginine treatment, we infused L-arginine or NG-nitro-L-arginine (L-NNA), an inhibitor of EDRF synthesis, while increasing fetal PO2 6 Torr by delivering 100% O2 to the ewe for 120 min. In controls, LPA blood flow progressively increased from 106 +/- 13 ml/min (baseline) to 257 +/- 34 ml/min (peak) at 40 min of increased PO2 (P < 0.05, baseline vs. peak) but steadily returned toward baseline during the next hour. Treatment with L-NNA markedly attenuated O2-induced pulmonary vasodilation (P < 0.05 vs. control). L-Arginine infusion did not augment or sustain the O2-induced vasodilator response. We also examined whether L-arginine could sustain pulmonary vasodilation to ACh, another EDRF-dependent stimulus, and found that the EDRF substrate neither potentiated nor sustained the ACh response. We conclude that: in the fetal lung 1) exogenous L-arginine is a fetal pulmonary vasodilator, 2) increased PO2 augments EDRF activity in the fetal lung, and 3) supplemental L-arginine does not sustain either O2- or ACh-induced vasodilation.(ABSTRACT TRUNCATED AT 250 WORDS)


1995 ◽  
Vol 268 (1) ◽  
pp. H288-H294 ◽  
Author(s):  
J. A. McQueston ◽  
J. P. Kinsella ◽  
D. D. Ivy ◽  
I. F. McMurtry ◽  
S. H. Abman

To determine whether endothelium-dependent pulmonary vasodilation is selectively impaired by chronic intrauterine pulmonary hypertension, we compared the hemodynamic effects of an endothelium-dependent agonist, acetylcholine (ACh), with an endothelium-independent agonist, atrial natriuretic peptide (ANP), before, during, and after development of pulmonary hypertension in five late-gestation fetal lambs. Pulmonary hypertension was produced over 9–12 days by progressive inflation of a vascular occluder around the ductus arteriosus. Age-matched fetal lambs (n = 5) without occluders served as controls. Mean pulmonary arterial pressure increased from 44 +/- 2 (baseline) to 65 +/- 4 Torr after 10-12 days of inflation (P < 0.05). Left lung pulmonary vascular resistance (PVR) increased from 0.52 +/- 0.06 to 0.72 +/- 0.11 Torr.ml-1.min over 10 days (P < 0.05). O2 saturation remained at > 40% during the study period. Although brief intrapulmonary infusions of ACh (1.5 micrograms over 15 min) lowered left lung PVR by 29 +/- 8% before ductus arteriosus compression, ACh-induced pulmonary vasodilation was absent after 9–12 days of pulmonary hypertension. In contrast, the vasodilator response to ANP remained intact throughout the study period. ACh- and ANP-induced vasodilation did not change with time in control animals. In five hypertensive animals delivered by cesarean section, inhaled NO (20 ppm) reduced left lung PVR from levels achieved during ventilation with 100% O2 alone (0.61 +/- 0.31 to 0.24 +/- 0.007 Torr.ml-1.min), increased arterial O2 saturation from 51 +/- 14 to 84 +/- 13%, and increased arterial PO2 from 29 +/- 11 to 106 +/- 34 Torr.(ABSTRACT TRUNCATED AT 250 WORDS)


2005 ◽  
Vol 289 (2) ◽  
pp. L315-L321 ◽  
Author(s):  
Theresa R. Grover ◽  
Thomas A. Parker ◽  
Neil E. Markham ◽  
Steven H. Abman

We have previously shown that lung VEGF expression is decreased in a fetal lamb model of PPHN and that VEGF165 inhibition causes severe pulmonary hypertension in fetal lambs. Therefore, we hypothesized that treatment with rhVEGF165 would preserve endothelium-dependent vasodilation and reduce the severity of pulmonary vascular remodeling in an experimental model of PPHN. We studied the effects of daily intrapulmonary infusions of rhVEGF after partial ligation of the ductus arteriosus (DA). We performed surgery in 24 late-gestation fetal lambs and placed catheters in the main pulmonary artery, left atrium, and aorta for pressure measurements and in the left pulmonary artery for drug infusions. A pressure transducer was placed around the LPA to measure blood flow to the left lung (Qp), and the DA was surgically constricted to induce pulmonary hypertension. rhVEGF165 or vehicle was infused for 7 or 14 days. ACh or 8-BrcGMP was infused on days 2 and 13 to assess endothelium-dependent and -independent vasodilation, respectively. ACh-induced vasodilation was reduced in PPHN lambs after 14 days (change in Qp from baseline, 106% vs. 11%). In contrast, the response to ACh was preserved in lambs treated with rhVEGF (change in Qp, 94% vs. 90%). Pulmonary vasodilation to 8-BrcGMP was not altered in PPHN lambs or enhanced by VEGF treatment. rhVEGF treatment increased expression of lung eNOS protein and decreased pulmonary artery wall thickness by 34% vs. PPHN lambs. We conclude that VEGF165 preserves endothelium-dependent vasodilation, upregulates eNOS expression, and reduces the severity of pulmonary vascular remodeling in experimental PPHN.


2016 ◽  
Vol 19 (4) ◽  
pp. 187 ◽  
Author(s):  
Dohun Kim ◽  
Si-Wook Kim ◽  
Hong-Ju Shin ◽  
Jong-Myeon Hong ◽  
Ji Hyuk Lee ◽  
...  

A 10-day-old boy was transferred to our hospital due to tachypnea. Patent ductus arteriosus (PDA), 4.8 mm in diameter, with small ASD was diagnosed on echocardiography. Surgical ligation of the ductus was performed after failure of three cycles of ibuprofen. However, the ductus remained open on routine postoperative echocardiography on the second postoperative day, and chest CT revealed inadvertent ligation of the left pulmonary artery (LPA) rather than the PDA. Emergent operation successfully reopened the clipped LPA and ligated the ductus on the same (second postoperative) day.<br />Mechanical ventilator support was weaned on postoperative day 21, and the baby was discharged on postoperative day 47 with a normal left lung shadow.


2009 ◽  
Vol 297 (2) ◽  
pp. L318-L325 ◽  
Author(s):  
Marc Chester ◽  
Pierre Tourneux ◽  
Greg Seedorf ◽  
Theresa R. Grover ◽  
Jason Gien ◽  
...  

Impaired nitric oxide-cGMP signaling contributes to severe pulmonary hypertension after birth, which may in part be due to decreased soluble guanylate cyclase (sGC) activity. Cinaciguat (BAY 58-2667) is a novel sGC activator that causes vasodilation, even in the presence of oxidized heme or heme-free sGC, but its hemodynamic effects have not been studied in the perinatal lung. We performed surgery on eight fetal (126 ± 2 days gestation) lambs (full term = 147 days) and placed catheters in the main pulmonary artery, aorta, and left atrium to measure pressures. An ultrasonic flow transducer was placed on the left pulmonary artery to measure blood flow, and a catheter was placed in the left pulmonary artery for drug infusion. Cinaciguat (0.1–100 μg over 10 min) caused dose-related increases in pulmonary blood flow greater than fourfold above baseline and reduced pulmonary vascular resistance by 80%. Treatment with 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), an sGC-oxidizing inhibitor, enhanced cinaciguat-induced pulmonary vasodilation by >120%. The pulmonary vasodilator effect of cinaciguat was prolonged, decreasing pulmonary vascular resistance for >1.5 h after brief infusion. In vitro stimulation of ovine fetal pulmonary artery smooth muscle cells with cinaciguat after ODQ treatment resulted in a 14-fold increase in cGMP compared with non-ODQ-treated cells. We conclude that cinaciguat causes potent and sustained fetal pulmonary vasodilation that is augmented in the presence of oxidized sGC and speculate that cinaciguat may have therapeutic potential for severe neonatal pulmonary hypertension.


2007 ◽  
Vol 103 (2) ◽  
pp. 594-599 ◽  
Author(s):  
Jesús Sánchez ◽  
Aigul Moldobaeva ◽  
Jessica McClintock ◽  
John Jenkins ◽  
Elizabeth Wagner

We previously showed increased expression of the ELR+, CXC chemokines in the lung after left pulmonary artery obstruction. These chemokines have been shown in other systems to bind their G protein-coupled receptor, CXCR2, and promote systemic endothelial cell proliferation, migration, and capillary tube formation. In the present study, we blocked CXCR2 in vivo using a neutralizing antibody and also studied mice that were homozygous null for CXCR2. To estimate the extent of neovascularization in this model, we measured systemic blood flow to the left lung 14 days after left pulmonary artery ligation (LPAL). We found blood flow significantly reduced (67% decrease) with neutralizing antibody treatment compared with controls. However, blood flow was not altered in the CXCR2-deficient mice compared with wild-type controls after LPAL. To test for ligand availability, we measured macrophage inflammatory protein (MIP)-2 in lung homogenates after LPAL, because this is the predominant CXC chemokine previously shown to be increased after LPAL ( 22 ). MIP-2 protein was two- to fourfold higher in the left lung relative to the right lung in all treatment groups 4 h after LPAL and this increase did not differ among groups. We speculate that the CXCR2-deficient mice have compensatory mechanisms that mitigate their lack of gene expression and conclude that CXCR2 contributes to chemokine-induced systemic angiogenesis after pulmonary artery obstruction.


2011 ◽  
Vol 110 (5) ◽  
pp. 1362-1373 ◽  
Author(s):  
Joseph J. Smolich ◽  
Jonathan P. Mynard ◽  
Daniel J. Penny

Although the distribution of average fetal pulmonary trunk (PT) blood flow favors the ductus arteriosus (DA) over the lungs, the phasic aspects of this distribution during systole and diastole are not well understood. Accordingly, flow profile and wave intensity (WI) analyses were performed at baseline and during brief flow increases accompanying an extrasystole (ES) in 10 anesthetized late-gestation fetal sheep instrumented with PT, DA, and left pulmonary artery (PA) micromanometer catheters and transit-time flow probes. At baseline, 83% of mean PT flow crossed the DA and 17% entered the lungs. However, early systolic flow associated with a forward-running compression wave (FCWis) was higher in the PA and predominant DA flow only emerged in midsystole when a large PA backward-running compression wave (BCWms), which reduced PA flow, was transmitted into the DA as a forward-running compression wave (FCWms) that increased flow. Subsequent protodiastolic forward DA flow occurring during pulmonary valve closure was associated with substantial retrograde PA flow, but insignificant PT flow. Conversely, forward DA flow in the remainder of diastole occurred with forward PT but near-zero PA flow. These flow and WI patterns, in conjunction with the results of mathematical modeling, suggest that 1) fetal PT flow preferentially passes into the PA during early systole due to a lower PA-than-DA characteristic impedance, while DA flow predominates in mid- and late systole due to flow effects arising from the PA BCWms, and 2) forward DA flow is mainly sustained by reversal of PA flow in protodiastole but discharge of a more central reservoir in diastole.


Sign in / Sign up

Export Citation Format

Share Document