pulmonary circulation
Recently Published Documents


TOTAL DOCUMENTS

2063
(FIVE YEARS 172)

H-INDEX

70
(FIVE YEARS 4)

2022 ◽  
Vol 12 ◽  
Author(s):  
Matthieu Petit ◽  
Edouard Jullien ◽  
Antoine Vieillard-Baron

Acute respiratory distress syndrome (ARDS) is characterized by protein-rich alveolar edema, reduced lung compliance and severe hypoxemia. Despite some evidence of improvements in mortality over recent decades, ARDS remains a major public health problem with 30% 28-day mortality in recent cohorts. Pulmonary vascular dysfunction is one of the pivot points of the pathophysiology of ARDS, resulting in a certain degree of pulmonary hypertension, higher levels of which are associated with morbidity and mortality. Pulmonary hypertension develops as a result of endothelial dysfunction, pulmonary vascular occlusion, increased vascular tone, extrinsic vessel occlusion, and vascular remodeling. This increase in right ventricular (RV) afterload causes uncoupling between the pulmonary circulation and RV function. Without any contractile reserve, the right ventricle has no adaptive reserve mechanism other than dilatation, which is responsible for left ventricular compression, leading to circulatory failure and worsening of oxygen delivery. This state, also called severe acute cor pulmonale (ACP), is responsible for excess mortality. Strategies designed to protect the pulmonary circulation and the right ventricle in ARDS should be the cornerstones of the care and support of patients with the severest disease, in order to improve prognosis, pending stronger evidence. Acute cor pulmonale is associated with higher driving pressure (≥18 cmH2O), hypercapnia (PaCO2 ≥ 48 mmHg), and hypoxemia (PaO2/FiO2 < 150 mmHg). RV protection should focus on these three preventable factors identified in the last decade. Prone positioning, the setting of positive end-expiratory pressure, and inhaled nitric oxide (INO) can also unload the right ventricle, restore better coupling between the right ventricle and the pulmonary circulation, and correct circulatory failure. When all these strategies are insufficient, extracorporeal membrane oxygenation (ECMO), which improves decarboxylation and oxygenation and enables ultra-protective ventilation by decreasing driving pressure, should be discussed in seeking better control of RV afterload. This review reports the pathophysiology of pulmonary hypertension in ARDS, describes right heart function, and proposes an RV protective approach, ranging from ventilatory settings and prone positioning to INO and selection of patients potentially eligible for veno-venous extracorporeal membrane oxygenation (VV ECMO).


CHEST Journal ◽  
2022 ◽  
Author(s):  
Bilal Haider Lashari ◽  
Maruti Kumaran ◽  
Amandeep Aneja ◽  
Todd Bull ◽  
Parth Rali

Antioxidants ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 54
Author(s):  
Jesus Prieto-Lloret ◽  
Elena Olea ◽  
Ana Gordillo-Cano ◽  
Inmaculada Docio ◽  
Ana Obeso ◽  
...  

Chronic sustained hypoxia (CSH), as found in individuals living at a high altitude or in patients suffering respiratory disorders, initiates physiological adaptations such as carotid body stimulation to maintain oxygen levels, but has deleterious effects such as pulmonary hypertension (PH). Obstructive sleep apnea (OSA), a respiratory disorder of increasing prevalence, is characterized by a situation of chronic intermittent hypoxia (CIH). OSA is associated with the development of systemic hypertension and cardiovascular pathologies, due to carotid body and sympathetic overactivation. There is growing evidence that CIH can also compromise the pulmonary circulation, causing pulmonary hypertension in OSA patients and animal models. The aim of this work was to compare hemodynamics, vascular contractility, and L-arginine-NO metabolism in two models of PH in rats, associated with CSH and CIH exposure. We demonstrate that whereas CSH and CIH cause several common effects such as an increased hematocrit, weight loss, and an increase in pulmonary artery pressure (PAP), compared to CIH, CSH seems to have more of an effect on the pulmonary circulation, whereas the effects of CIH are apparently more targeted on the systemic circulation. The results suggest that the endothelial dysfunction evident in pulmonary arteries with both hypoxia protocols are not due to an increase in methylated arginines in these arteries, although an increase in plasma SDMA could contribute to the apparent loss of basal NO-dependent vasodilation and, therefore, the increase in PAP that results from CIH.


Pulmonology ◽  
2021 ◽  
Author(s):  
R.F. Rinaldo ◽  
M. Guazzi ◽  
F. Rusconi ◽  
E.M. Parazzini ◽  
F. Pitari ◽  
...  

2021 ◽  
pp. 2102334
Author(s):  
Robert Naeije ◽  
Manuel J. Richter ◽  
Lewis J. Rubin

Pulmonary arterial hypertension (PAH) is a rare dyspnea-fatigue syndrome caused by a progressive increase in pulmonary vascular resistance (PVR) and eventual right ventricular (RV) failure. In spite of extensive pulmonary vascular remodeling, lung function in PAH is generally well preserved, with hyperventilation and increased physiologic dead space, but minimal changes in lung mechanics and only mild to moderate hypoxemia and hypocapnia. Hypoxemia is mainly caused by a low mixed venous PO2 from a decreased cardiac output. Hypocapnia is mainly caused by an increased chemosensitivity. Exercise limitation in PAH is cardiovascular rather than ventilatory or muscular. The extent of pulmonary vascular disease in PAH is defined by multipoint pulmonary vascular pressure-flow relationships with a correction for hematocrit. Pulsatile pulmonary vascular pressure-flow relationships in PAH allow for the assessment of RV hydraulic load. This analysis is possible either in the frequency-domain or in the time-domain. The RV in PAH adapts to increased afterload by an increased contractility to preserve its coupling to the pulmonary circulation. When this homeometric mechanism is exhausted, the RV dilates to preserve flow output by an additional heterometric mechanism. Right heart failure is then diagnosed by imaging of increased right heart dimensions and clinical systemic congestion signs and symptoms. The coupling of the RV to the pulmonary circulation is assessed by the ratio of end-systolic to arterial elastances, but these measurements are difficult. Simplified estimates of RV-PA coupling can be obtained by magnetic resonance or echocardiographic imaging of ejection fraction.


Biomolecules ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1629
Author(s):  
Divya Guntur ◽  
Horst Olschewski ◽  
Péter Enyedi ◽  
Réka Csáki ◽  
Andrea Olschewski ◽  
...  

Potassium ion concentrations, controlled by ion pumps and potassium channels, predominantly govern a cell′s membrane potential and the tone in the vessels. Calcium-activated potassium channels respond to two different stimuli-changes in voltage and/or changes in intracellular free calcium. Large conductance calcium-activated potassium (BKCa) channels assemble from pore forming and various modulatory and auxiliary subunits. They are of vital significance due to their very high unitary conductance and hence their ability to rapidly cause extreme changes in the membrane potential. The pathophysiology of lung diseases in general and pulmonary hypertension, in particular, show the implication of either decreased expression and partial inactivation of BKCa channel and its subunits or mutations in the genes encoding different subunits of the channel. Signaling molecules, circulating humoral molecules, vasorelaxant agents, etc., have an influence on the open probability of the channel in pulmonary arterial vascular cells. BKCa channel is a possible therapeutic target, aimed to cause vasodilation in constricted or chronically stiffened vessels, as shown in various animal models. This review is a comprehensive collation of studies on BKCa channels in the pulmonary circulation under hypoxia (hypoxic pulmonary vasoconstriction; HPV), lung pathology, and fetal to neonatal transition, emphasising pharmacological interventions as viable therapeutic options.


2021 ◽  
Vol 33 (4) ◽  
pp. 306-312
Author(s):  
Ghassan A. Shaath ◽  
Abdulraouf MZ Jijeh ◽  
Mohammed Fararjeh ◽  
Fahad Alhabshan ◽  
Mansour B Almutairi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document