fetal lung
Recently Published Documents


TOTAL DOCUMENTS

2380
(FIVE YEARS 224)

H-INDEX

78
(FIVE YEARS 6)

2022 ◽  
Author(s):  
Kasra Khalaj ◽  
Lina Antounians ◽  
Rebeca Lopes Figueira ◽  
Martin Post ◽  
Augusto Zani

Rationale: Pulmonary hypoplasia secondary to congenital diaphragmatic hernia (CDH) is characterized by reduced branching morphogenesis, which is responsible for poor clinical outcomes. Administration of amniotic fluid stem cell extracellular vesicles (AFSC-EVs) rescues branching morphogenesis in rodent fetal models of pulmonary hypoplasia. Herein, we hypothesized that AFSC-EVs exert their regenerative potential by affecting autophagy, a process required for normal lung development. Objectives: To evaluate autophagy in hypoplastic lungs throughout gestation and establish whether AFSC-EV administration improves branching morphogenesis through autophagy-mediated mechanisms. Methods: EVs were isolated from c-kit+ AFSC conditioned medium by ultracentrifugation and characterized for size, morphology, and EV markers. Branching morphogenesis was inhibited in rat fetuses by nitrofen administration to dams and in human fetal lung explants by blocking RAC1 activity with NSC23766. Expression of autophagy activators (BECN1 and ATG5) and adaptor (SQSTM1/p62) was analyzed in vitro (rat and human fetal lung explants) and in vivo (rat fetal lungs). Mechanistic studies on rat fetal primary lung epithelial cells were conducted using inhibitors for microRNA-17 and -20a contained in the AFSC-EV cargo and known to regulate autophagy. Measurements and Main Results: Rat and human models of fetal pulmonary hypoplasia showed reduced autophagy mainly at pseudoglandular and canalicular stages. AFSC-EV administration restored autophagy in both pulmonary hypoplasia models by transferring miR-17~92 cluster members contained in the EV cargo. Conclusions: AFSC-EV treatment rescues branching morphogenesis partly by restoring autophagy through miRNA cargo transfer. This study enhances our understanding of pulmonary hypoplasia pathogenesis and creates new opportunities for fetal therapeutic intervention in CDH babies.


2022 ◽  
Author(s):  
Kasra Khalaj ◽  
Rebeca Lopes Figueira ◽  
Lina Antounians ◽  
Sree Gandhi ◽  
Matthew Wales ◽  
...  

Pulmonary hypoplasia secondary to congenital diaphragmatic hernia (CDH) is characterized by impaired branching morphogenesis and differentiation. We have previously demonstrated that administration of extracellular vesicles derived from rat amniotic fluid stem cells (AFSC-EVs) rescues development of hypoplastic lungs at the pseudoglandular and alveolar stages in rodent models of CDH. Herein, we tested whether AFSC-EVs exert their regenerative effects at the canalicular and saccular stages, as these are translationally relevant for clinical intervention. To induce fetal pulmonary hypoplasia, we gavaged rat dams with nitrofen at embryonic day 9.5 and demonstrated that nitrofen-exposed lungs had impaired branching morphogenesis, dysregulated signaling pathways relevant to lung development (FGF10/FGFR2, ROBO/SLIT, Ephrin, Neuropilin 1, beta-catenin) and impaired epithelial and mesenchymal cell marker expression at both stages. AFSC-EVs administered to nitrofen-exposed lung explants rescued airspace density and increased the expression levels of key factors responsible for branching morphogenesis. Moreover, AFSC-EVs rescued the expression of alveolar type 1 and 2 cell markers at both canalicular and saccular stages, and restored markers of club, ciliated epithelial, and pulmonary neuroendocrine cells at the saccular stage. AFSC-EV treated lungs also had restored markers of lipofibroblasts and PDGFRA+ cells to control levels at both stages. EV tracking showed uptake of AFSC-EV RNA cargo throughout the fetal lung and an mRNA-miRNA network analysis identified that several miRNAs responsible for regulating lung development processes were contained in the AFSC-EV cargo. These findings suggest that AFSC-EV based therapies hold potential for restoring fetal lung growth and maturation in babies with pulmonary hypoplasia secondary to CDH.


2022 ◽  
Vol 219 (2) ◽  
Author(s):  
Elza Evren ◽  
Emma Ringqvist ◽  
Jean-Marc Doisne ◽  
Anna Thaller ◽  
Natalie Sleiers ◽  
...  

Despite their importance in lung health and disease, it remains unknown how human alveolar macrophages develop early in life. Here we define the ontogeny of human alveolar macrophages from embryonic progenitors in vivo, using a humanized mouse model expressing human cytokines (MISTRG mice). We identified alveolar macrophage progenitors in human fetal liver that expressed the GM-CSF receptor CD116 and the transcription factor MYB. Transplantation experiments in MISTRG mice established a precursor–product relationship between CD34−CD116+ fetal liver cells and human alveolar macrophages in vivo. Moreover, we discovered circulating CD116+CD64−CD115+ macrophage precursors that migrated from the liver to the lung. Similar precursors were present in human fetal lung and expressed the chemokine receptor CX3CR1. Fetal CD116+CD64− macrophage precursors had a proliferative gene signature, outcompeted adult precursors in occupying the perinatal alveolar niche, and developed into functional alveolar macrophages. The discovery of the fetal alveolar macrophage progenitor advances our understanding of human macrophage origin and ontogeny.


2022 ◽  
Author(s):  
Peng He ◽  
Kyungtae Lim ◽  
Dawei Sun ◽  
Jan Patrick Pett ◽  
Quitz Jeng ◽  
...  

We present a multiomic cell atlas of human lung development that combines single cell RNA and ATAC sequencing, high throughput spatial transcriptomics and single cell imaging. Coupling single cell methods with spatial analysis has allowed a comprehensive cellular survey of the epithelial, mesenchymal, endothelial and erythrocyte/leukocyte compartments from 5-22 post conception weeks. We identify new cell states in all compartments. These include developmental-specific secretory progenitors that resemble cells in adult fibrotic lungs and a new subtype of neuroendocrine cell related to human small cell lung cancer; observations which strengthen the connections between development and disease/regeneration. Our datasets are available for the community to download and interact with through our web interface (https://fetal-lung.cellgeni.sanger.ac.uk). Finally, to illustrate its general utility, we use our cell atlas to generate predictions about cell-cell signalling and transcription factor hierarchies which we test using organoid models.


2022 ◽  
Vol 22 (1) ◽  
Author(s):  
Jing Jiao ◽  
Yanran Du ◽  
Xiaokang Li ◽  
Yi Guo ◽  
Yunyun Ren ◽  
...  

Abstract Background To develop a non-invasive method for the prenatal prediction of neonatal respiratory morbidity (NRM) by a novel radiomics method based on imbalanced few-shot fetal lung ultrasound images. Methods A total of 210 fetal lung ultrasound images were enrolled in this study, including 159 normal newborns and 51 NRM newborns. Fetal lungs were delineated as the region of interest (ROI), where radiomics features were designed and extracted. Integrating radiomics features selected and two clinical features, including gestational age and gestational diabetes mellitus, the prediction model was developed and evaluated. The modelling methods used were data augmentation, cost-sensitive learning, and ensemble learning. Furthermore, two methods, which embed data balancing into ensemble learning, were employed to address the problems of imbalance and few-shot simultaneously. Results Our model achieved sensitivity values of 0.82, specificity values of 0.84, balanced accuracy values of 0.83 and area under the curve values of 0.87 in the test set. The radiomics features extracted from the ROIs at different locations within the lung region achieved similar classification performance outcomes. Conclusion The feature set we designed can efficiently and robustly describe fetal lungs for NRM prediction. RUSBoost shows excellent performance compared to state-of-the-art classifiers on the imbalanced few-shot dataset. The diagnostic efficacy of the model we developed is similar to that of several previous reports of amniocentesis and can serve as a non-invasive, precise evaluation tool for NRM prediction.


2022 ◽  
Vol 226 (1) ◽  
pp. S375-S376
Author(s):  
Eran Ashwal‏ ◽  
Jonathan Sgro ◽  
Patrick Shannon ◽  
Karen Chong ◽  
David Chitayat

Viruses ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2355
Author(s):  
Alexis Aguiar ◽  
Melissa Galinato ◽  
Maite’ Bradley Silva ◽  
Bryant Toth ◽  
Michael A. McVoy ◽  
...  

Only a handful of cell types, including fibroblasts, epithelial, and endothelial cells, can support human cytomegalovirus (CMV) replication in vitro, in striking contrast to the situation in vivo. While the susceptibility of epithelial and endothelial cells to CMV infection is strongly modulated by their anatomical site of origin, multiple CMV strains have been successfully isolated and propagated on fibroblasts derived from different organs. As oral mucosal cells are likely involved in CMV acquisition, we sought to evaluate the ability of infant labial fibroblasts to support CMV replication, compared to that of commonly used foreskin and fetal lung fibroblasts. No differences were found in the proportion of cells initiating infection, or in the amounts of viral progeny produced after exposure to the fibroblast-adapted CMV strain AD169 or to the endothelial cell-adapted strain TB40/E. Syncytia formation was, however, significantly enhanced in infected labial and lung fibroblasts compared to foreskin-derived cells, and did not occur after infection with AD169. Together, these data indicate that fibroblast populations derived from different tissues are uniformly permissive to CMV infection but retain phenotypic differences of potential importance for infection-induced cell–cell fusion, and ensuing viral spread and pathogenesis in different organs.


Sign in / Sign up

Export Citation Format

Share Document