chronic hypoxia
Recently Published Documents


TOTAL DOCUMENTS

1866
(FIVE YEARS 199)

H-INDEX

77
(FIVE YEARS 7)

Cells ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 292
Author(s):  
Ada-Sophia Clees ◽  
Verena Stolp ◽  
Björn Häupl ◽  
Dominik C. Fuhrmann ◽  
Frank Wempe ◽  
...  

Multiple myeloma (MM) is the second most common hematologic malignancy, which is characterized by clonal proliferation of neoplastic plasma cells in the bone marrow. This microenvironment is characterized by low oxygen levels (1–6% O2), known as hypoxia. For MM cells, hypoxia is a physiologic feature that has been described to promote an aggressive phenotype and to confer drug resistance. However, studies on hypoxia are scarce and show little conformity. Here, we analyzed the mRNA expression of previously determined hypoxia markers to define the temporal adaptation of MM cells to chronic hypoxia. Subsequent analyses of the global proteome in MM cells and the stromal cell line HS-5 revealed hypoxia-dependent regulation of proteins, which directly or indirectly upregulate glycolysis. In addition, chronic hypoxia led to MM-specific regulation of nine distinct proteins. One of these proteins is the cysteine protease legumain (LGMN), the depletion of which led to a significant growth disadvantage of MM cell lines that is enhanced under hypoxia. Thus, herein, we report a methodologic strategy to examine MM cells under physiologic hypoxic conditions in vitro and to decipher and study previously masked hypoxia-specific therapeutic targets such as the cysteine protease LGMN.


2022 ◽  
Vol 8 ◽  
Author(s):  
Na Zhou ◽  
Libao Liu ◽  
Rongjun Zou ◽  
Minghui Zou ◽  
Mingxia Zhang ◽  
...  

Background: Tetralogy of Fallot (TOF) is the most common cyanotic heart disease. However, the association of cardiac metabolic reprogramming changes and underlying molecular mechanisms in TOF-related chronic myocardial hypoxia damage are still unclear.Methods: In this study, we combined microarray transcriptomics analysis with liquid chromatography tandem-mass spectrometry (LC–MS/MS) spectrum metabolomics analysis to establish the metabolic reprogramming that occurs in response to chronic hypoxia damage. Two Gene Expression Omnibus (GEO) datasets, GSE132176 and GSE141955, were downloaded to analyze the metabolic pathway in TOF. Then, a metabolomics analysis of the clinical samples (right atrial tissue and plasma) was performed. Additionally, an association analysis between differential metabolites and clinical phenotypes was performed. Next, four key genes related to sphingomyelin metabolism were screened and their expression was validated by real-time quantitative PCR (QT-PCR).Results: The gene set enrichment analysis (GSEA) showed that sphingolipid metabolism was downregulated in TOF and the metabolomics analysis showed that multiple sphingolipids were dysregulated. Additionally, genes related to sphingomyelin metabolism were identified. We found that four core genes, UDP-Glucose Ceramide Glucosyltransferase (UGCG), Sphingosine-1-Phosphate Phosphatase 2 (SGPP2), Fatty Acid 2-Hydroxylase (FA2H), and Sphingosine-1-Phosphate Phosphatase 1 (SGPP1), were downregulated in TOF.Conclusion: Sphingolipid metabolism was downregulated in TOF; however, the detailed mechanism needs further investigation.


Cureus ◽  
2021 ◽  
Author(s):  
Rabia Muddassir ◽  
Abdelrahman Idris ◽  
Noura Alshareef ◽  
Ghaidaa Khouj ◽  
Rimaz Alassiri

2021 ◽  
Vol 118 (50) ◽  
pp. e2107993118
Author(s):  
Ah Jung Heo ◽  
Su Bin Kim ◽  
Chang Hoon Ji ◽  
Dohyun Han ◽  
Su Jin Lee ◽  
...  

Cellular homeostasis requires the sensing of and adaptation to intracellular oxygen (O2) and reactive oxygen species (ROS). The Arg/N-degron pathway targets proteins that bear destabilizing N-terminal residues for degradation by the proteasome or via autophagy. Under normoxic conditions, the N-terminal Cys (Nt-Cys) residues of specific substrates can be oxidized by dioxygenases such as plant cysteine oxidases and cysteamine (2-aminoethanethiol) dioxygenases and arginylated by ATE1 R-transferases to generate Arg-CysO2(H) (R-CO2). Proteins bearing the R-CO2 N-degron are targeted via Lys48 (K48)–linked ubiquitylation by UBR1/UBR2 N-recognins for proteasomal degradation. During acute hypoxia, such proteins are partially stabilized, owing to decreased Nt-Cys oxidation. Here, we show that if hypoxia is prolonged, the Nt-Cys of regulatory proteins can be chemically oxidized by ROS to generate Arg-CysO3(H) (R-CO3), a lysosomal N-degron. The resulting R-CO3 is bound by KCMF1, a N-recognin that induces K63-linked ubiquitylation, followed by K27-linked ubiquitylation by the noncanonical N-recognin UBR4. Autophagic targeting of Cys/N-degron substrates is mediated by the autophagic N-recognin p62/SQTSM-1/Sequestosome-1 through recognition of K27/K63-linked ubiquitin (Ub) chains. This Cys/N-degron–dependent reprogramming in the proteolytic flux is important for cellular homeostasis under both chronic hypoxia and oxidative stress. A small-compound ligand of p62 is cytoprotective under oxidative stress through its ability to accelerate proteolytic flux of K27/K63-ubiquitylated Cys/N-degron substrates. Our results suggest that the Nt-Cys of conditional Cys/N-degron substrates acts as an acceptor of O2 to maintain both O2 and ROS homeostasis and modulates half-lives of substrates through either the proteasome or lysosome by reprogramming of their Ub codes.


Stroke ◽  
2021 ◽  
Author(s):  
Peter Kang ◽  
Chunwei Ying ◽  
Yasheng Chen ◽  
Andria L. Ford ◽  
Hongyu An ◽  
...  

Background and Purpose: Chronic hypoxia-ischemia is a putative mechanism underlying the development of white matter hyperintensities (WMH) and microstructural disruption in cerebral small vessel disease. WMH fall primarily within deep white matter (WM) watershed regions. We hypothesized that elevated oxygen extraction fraction (OEF), a signature of hypoxia-ischemia, would be detected in the watershed where WMH density is highest. We further hypothesized that OEF would be elevated in regions immediately surrounding WMH, at the leading edge of growth. Methods: In this cross-sectional study conducted from 2016 to 2019 at an academic medical center in St Louis, MO, participants (age >50) with a range of cerebrovascular risk factors underwent brain magnetic resonance imaging using pseudocontinuous arterial spin labeling, asymmetric spin echo, fluid-attenuated inversion recovery and diffusion tensor imaging to measure cerebral blood flow (CBF), OEF, WMH, and WM integrity, respectively. We defined the physiologic watershed as a region where CBF was below the 10th percentile of mean WM CBF in a young healthy cohort. We conducted linear regression to evaluate the relationship between CBF and OEF with structural and microstructural WM injury defined by fluid-attenuated inversion recovery WMH and diffusion tensor imaging, respectively. We conducted ANOVA to determine if OEF was increased in proximity to WMH lesions. Results: In a cohort of 42 participants (age 50–80), the physiologic watershed region spatially overlapped with regions of highest WMH lesion density. As CBF decreased and OEF increased, WMH density increased. Elevated watershed OEF was associated with greater WMH burden and microstructural disruption, after adjusting for vascular risk factors. In contrast, WM and watershed CBF were not associated with WMH burden or microstructural disruption. Moreover, OEF progressively increased while CBF decreased, in concentric contours approaching WMH lesions. Conclusions: Chronic hypoxia-ischemia in the watershed region may contribute to cerebral small vessel disease pathogenesis and development of WMH. Watershed OEF may hold promise as an imaging biomarker to identify individuals at risk for cerebral small vessel disease progression.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yong-Jie Chen ◽  
Yi Li ◽  
Xian Guo ◽  
Bo Huo ◽  
Yue Chen ◽  
...  

Abnormal proliferation of pulmonary artery smooth muscle cells (PASMCs) is a critical pathological feature in the pathogenesis of pulmonary arterial hypertension (PAH), but the regulatory mechanisms remain largely unknown. Herein, we demonstrated that interferon regulatory factor 9 (IRF9) accelerated PASMCs proliferation by regulating Prohibitin 1 (PHB1) expression and the AKT-GSK3β signaling pathway. Compared with control groups, the rats treated with chronic hypoxia (CH), monocrotaline (MCT) or sugen5416 combined with chronic hypoxia (SuHx), and mice challenged with CH had significantly thickened pulmonary arterioles and hyperproliferative PASMCs. More importantly, the protein level of IRF9 was found to be elevated in the thickened medial wall of the pulmonary arterioles in all of these PAH models. Notably, overexpression of IRF9 significantly promoted the proliferation of rat and human PASMCs, as evidenced by increased cell counts, EdU-positive cells and upregulated biomarkers of cell proliferation. In contrast, knockdown of IRF9 suppressed the proliferation of rat and human PASMCs. Mechanistically, IRF9 directly restrained PHB1 expression and interacted with AKT to inhibit the phosphorylation of AKT at thr308 site, which finally led to mitochondrial dysfunction and PASMC proliferation. Unsurprisingly, MK2206, a specific inhibitor of AKT, partially reversed the PASMC proliferation inhibited by IRF9 knockdown. Thus, our results suggested that elevation of IRF9 facilitates PASMC proliferation by regulating PHB1 expression and AKT signaling pathway to affect mitochondrial function during the development of PAH, which indicated that targeting IRF9 may serve as a novel strategy to delay the pathological progression of PAH.


Biomolecules ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1801
Author(s):  
Chenyou Shen ◽  
Jianxin Tan ◽  
Xusheng Yang ◽  
Wei Wang ◽  
Youai Dai ◽  
...  

Pulmonary hypertension (PH) is characterized by vascular remodeling caused by marked proliferation of pulmonary artery smooth muscle cells (PASMCs). Andrographolide (ANDRO) is a potent anti-inflammatory agent which possesses antioxidant, and has anticarcinogenic activity. The present study examined potential therapeutic effects of ANDRO on PH in both chronic hypoxia and Sugen5416/hypoxia mouse PH models. Effects of ANDRO were also studied in cultured human PASMCs isolated from either healthy donors or PH patients. In vivo, ANDRO decreased distal pulmonary arteries (PAs) remodeling, mean PA pressure and right ventricular hypertrophy in chronic hypoxia- and Sugen/hypoxia-induced PH in mice. ANDRO reduced cell viability, proliferation and migration, but increased cell apoptosis in the PASMCs isolated from PH patients. ANDRO also reversed the dysfunctional bone morphogenetic protein receptor type-2 (BMPR2) signaling, suppressed [Ca2+]i elevation, reactive oxygen species (ROS) generation, and the upregulated expression of IL-6 and IL-8, ET-1 and VEGF in PASMCs from PH patients. Moreover, ANDRO significantly attenuated the activation of TLR4/NF-κB, ERK- and JNK-MAPK signaling pathways and reversed the inhibition of p38-MAPK in PASMCs of PH patients. Further, ANDRO blocked hypoxia-triggered ROS generation by suppressing NADPH oxidase (NOX) activation and augmenting nuclear factor erythroid 2-related factor 2 (Nrf2) expression both in vitro and in vivo. Conventional pulmonary vasodilators have limited efficacy for the treatment of severe PH. We demonstrated that ANDRO may reverse pulmonary vascular remodeling through modulation of NOX/Nrf2-mediated oxidative stress and NF-κB-mediated inflammation. Our findings suggest that ANDRO may have therapeutic value in the treatment of PH.


2021 ◽  
Vol 8 ◽  
Author(s):  
Massimo W. Rivolta ◽  
Moira Barbieri ◽  
Tamara Stampalija ◽  
Roberto Sassi ◽  
Martin G. Frasch

During labor, uterine contractions trigger the response of the autonomic nervous system (ANS) of the fetus, producing sawtooth-like decelerations in the fetal heart rate (FHR) series. Under chronic hypoxia, ANS is known to regulate FHR differently with respect to healthy fetuses. In this study, we hypothesized that such different ANS regulation might also lead to a change in the FHR deceleration morphology. The hypothesis was tested in an animal model comprising nine normoxic and five chronically hypoxic fetuses that underwent a protocol of umbilical cord occlusions (UCOs). Deceleration morphologies in the fetal inter-beat time interval (FRR) series were modeled using a trapezoid with four parameters, i.e., baseline b, deceleration depth a, UCO response time τu and recovery time τr. Comparing normoxic and hypoxic sheep, we found a clear difference for τu (24.8±9.4 vs. 39.8±9.7 s; p < 0.05), a (268.1±109.5 vs. 373.0±46.0 ms; p < 0.1) and Δτ = τu − τr (13.2±6.9 vs. 23.9±7.5 s; p < 0.05). Therefore, the animal model supported the hypothesis that hypoxic fetuses have a longer response time τu and larger asymmetry Δτ as a response to UCOs. Assessing these morphological parameters during labor is challenging due to non-stationarity, phase desynchronization and noise. For this reason, in the second part of the study, we quantified whether acceleration capacity (AC), deceleration capacity (DC), and deceleration reserve (DR), computed through Phase-Rectified Signal Averaging (PRSA, known to be robust to noise), were correlated with the morphological parameters. DC, AC and DR were correlated with τu, τr and Δτ for a wide range of the PRSA parameter T (Pearson's correlation ρ > 0.8, p < 0.05). In conclusion, deceleration morphologies have been found to differ between normoxic and hypoxic sheep fetuses during UCOs. The same difference can be assessed through PRSA based parameters, further motivating future investigations on the translational potential of this methodology on human data.


Sign in / Sign up

Export Citation Format

Share Document