Brain stem reticular influences on lumbar axial muscle activity. I. Effective sites

1984 ◽  
Vol 246 (3) ◽  
pp. R389-R395 ◽  
Author(s):  
P. A. Femano ◽  
S. Schwartz-Giblin ◽  
D. W. Pfaff

Lumbar axial muscle responses to electrical stimulation of the brain stem reticular formation were used to characterize reticular influences on these muscles. Electromyographic recordings were obtained from the transversospinalis, medial longissimus, and lateral longissimus systems in the urethan-anesthetized rat. Ipsilateral stimulation of the pontomedullary reticular formation evoked excitatory responses in these muscles. Trains of pulses were required, but currents as low as 15 microA were effective. Contralateral reticular stimulation with currents similar to those that elicited activation during ipsilateral stimulation at the same brain stem levels could inhibit lumbar electromyographic activity. The results suggest that the motoneurons innervating the lumbar axial musculature in the rat receive strong reticulospinal influences that could be important for postural maintenance and the expression of certain behaviors.

1990 ◽  
Vol 64 (3) ◽  
pp. 782-795 ◽  
Author(s):  
T. Drew ◽  
S. Rossignol

1. The present study has examined the detailed organization of the medullary reticular formation (MRF) as revealed by microstimulation (33-ms trains of 0.2-ms duration pulses at 330 Hz and 35 microA or less) in the intact, chronically implanted, unanesthetized cat. Stimulus-locked electromyographic (EMG) responses were recorded from flexors and extensors of each of the four limbs, as well as bilaterally from muscles of the neck and back, during stimulation of the same 592 loci that formed the basis of the preceding article. 2. The thresholds of the responses were different for each group of muscles, with, on the average, the neck muscles being activated at the lowest range of currents, 13.8-16.5 microA; forelimb muscles at 16.9-17.9 microA; back muscles at 25.4-25.7 microA; and hindlimb muscles at 21.1-25.7 microA. 3. Whereas stimulation within the MRF evoked movement of the head only to the stimulated side (preceding article), analysis of the EMG responses showed there was frequently bilateral activation of the neck muscles. Similarly, even though stimulation produced predominantly ipsilateral elbow flexion and contralateral elbow extension, most loci caused cocontraction of antagonistic muscles at these joints. Cocontraction was also frequently observed for the hindlimbs. Reciprocal activation of antagonistic muscles was less frequent but was observed in the ipsilateral forelimb as well as in both hindlimbs; it was never observed in the contralateral forelimb. 4. Although excitatory responses were observed from widespread regions for all of the muscles under study, those regions of the MRF that evoked the strongest responses in each muscle showed a large degree of segregation. Muscles of the ipsilateral forelimb were most strongly activated from the rostrodorsal MRF, whereas muscles of the contralateral forelimb were most strongly effected by stimulation caudoventrally. Muscles of the hindlimbs were more strongly activated from the rostral brain stem, although with some exceptions. Responses in axial muscles were evoked from widespread regions of the brain stem but were concentrated further caudally than were the limb muscles. 5. Excitatory responses were much more prevalent than inhibitory responses and were evoked from all regions of the MRF, including the most caudal and ventral areas. The shortest latency responses in each track were, on the average, as follows: 6.6-8.8 ms for the neck; 11.2-13.4 ms for the forelimbs; 13.8-14.2 ms for the back; and 15.9-17.2 ms for the hindlimbs. Inhibitory responses were also evoked from widely distributed regions, which were intermingled with those loci evoking excitatory responses.(ABSTRACT TRUNCATED AT 400 WORDS)


2002 ◽  
Vol 87 (4) ◽  
pp. 1981-1992 ◽  
Author(s):  
Young K. Cho ◽  
Cheng-Shu Li ◽  
David V. Smith

Gustatory responses in the brain stem are modifiable by several physiological factors, including blood insulin and glucose, intraduodenal lipids, gastric distension, and learning, although the neural substrates for these modulatory effects are not known. Stimulation of the lateral hypothalamus (LH) produces increases in food intake and alterations in taste preference behavior, whereas damage to this area has opposite effects. In the present study, we investigated the effects of LH stimulation on the neural activity of taste-responsive cells in the nucleus of the solitary tract (NST) of the hamster. Bipolar stimulating electrodes were bilaterally implanted in the LH, and the responses of 99 neurons in the NST, which were first characterized for their taste sensitivities, were tested for their response to both ipsilateral and contralateral LH stimulation. Half of the taste-responsive cells in the NST (49/99) were modulated by LH stimulation. Contralateral stimulation was more often effective (41 cells) than ipsilateral (13 cells) and always excitatory; 10 cells were excited bilaterally. Six cells were inhibited by ipsilateral stimulation. A subset of these cells ( n = 13) was examined for the effects of microinjection of dl-homocysteic acid (DLH), a glutamate receptor agonist, into the LH. The effects of electrical stimulation were completely mimicked by DLH, indicating that cell somata in and around the LH are responsible for these effects. Other cells ( n = 14) were tested for the effects of electrical stimulation of the LH on the responses to stimulation of the tongue with 0.032 M sucrose, NaCl, and quinine hydrochloride, and 0.0032 M citric acid. Responses to taste stimuli were more than doubled by the excitatory influence of the LH. These data show that the LH, in addition to its role in feeding and metabolism, exerts descending control over the processing of gustatory information through the brain stem.


1959 ◽  
Vol 196 (3) ◽  
pp. 669-673 ◽  
Author(s):  
H. B. Kelly ◽  
L. M. N. Bach

In cats anesthetized with Nembutal the integrity of the lumbar sympathetic chain is necessary for the maintenance of the normal basal height of the patellar reflex. The centrally activated sympathetic component of brain stem enhancement of the patellar reflex is consistently and totally abolished by either surgical or chemical interference with the sympathetic supply to the hind leg. Although the use of sympatholytic drugs does not affect (presumably) synaptic facilitation of reflex activity resulting from brain stem reticular stimulation, mechanical stimulation of either the lumbar sympathetic or splanchnic nerves will cause a temporary but marked depression of this facilitation. Simultaneous stimulation of either the lumbar sympathetic or splanchnic nerves completely and consistently blocks the facilitatory effects of brain stem reticular stimulation. Conversely, simultaneous stimulation of the brain stem reticular formation consistently and totally blocks the enchancement of the patellar reflex which results from stimulation of the peripheral lumbar sympathetic or splanchnic nerves. The former phenomenon does not result from any peripheral locus of interaction between adrenaline and the innervation of the quadriceps muscle. Cross perfusion experiments indicate that the locus of interaction may involve the brain stem reticular formation.


Sign in / Sign up

Export Citation Format

Share Document