Comparison of hormonal responses to hypotension in mature and immature fetal lambs

1988 ◽  
Vol 255 (1) ◽  
pp. R67-R72 ◽  
Author(s):  
N. M. Rawashdeh ◽  
N. D. Ray ◽  
D. K. Sundberg ◽  
J. C. Rose

We studied norepinephrine (NE) and plasma renin activity (PRA) responses to sodium nitroprusside (NP)-induced hypotension in seven chronically catheterized fetal lambs 0.79-0.94 gestation (mature) and in seven fetuses 0.64-0.72 gestation (immature) 4 or 5 days after surgery. We infused intravenously 5% dextrose in water (DW) or NP in DW to reduce arterial pressure 30% in fetuses for 10 min. Initial infusion choice was random, and the two infusions were separated by 24-48 h. In both groups, basal NE levels were similar and doubled in response to hypotension. In mature fetuses, PRA basal levels were 6.89 +/- 1.80 ng.ml-1.h-1 and increased two- to threefold with hypotension. In immature fetuses, PRA basal levels were 2.42 +/- 0.86 ng.ml-1.h-1 and did not change with hypotension. No changes were observed with DW infusion in either group. Arterial blood gases were normal and remained unchanged. We conclude that in the lamb fetus, NE responses to hypotension are present before and are independent of the development of PRA responses and that before 0.72 gestation there is a functional deficit in the renin-angiotensin system.

1984 ◽  
Vol 246 (1) ◽  
pp. E84-E88
Author(s):  
C. D. Simon ◽  
T. W. Honeyman ◽  
J. C. Fray

The mechanisms whereby the pituitary gland maintains arterial pressure were investigated in rats. The arterial pressure in hypophysectomized rats was 30 mmHg below normal. Saralasin or captopril caused a further fall of 25 and 30 mmHg, respectively, suggesting that the renin-angiotensin system plays a role in blood pressure maintenance in hypophysectomized rats. Growth hormone administration to hypophysectomized rats increased the arterial pressure, but pretreatment with captopril prevented the effect. Plasma renin activity and basal renin secretion (in vitro) was normal in hypophysectomized rats despite a twofold greater renal renin content. Secretory responsiveness to isoproterenol and calcium omission was lower in hypophysectomized rats. It is concluded that the renin-angiotensin system plays a role in maintaining arterial blood pressure in hypophysectomized rats although the responsiveness of the system may be decreased.


1975 ◽  
Vol 228 (2) ◽  
pp. 613-617 ◽  
Author(s):  
LR Krakoff ◽  
R Selvadurai ◽  
E Sutter

The effect of methylprednisolone or deoxycorticosterone upon systemic arterial blood pressure and components of the renin-angiotensin system was studied in the rat. Rats maintained on regular diets given methylprednisolone suspension 20 mg/kg body wt demonstrated a significant increase in arterial pressure of + 37 plus or minus 5 mmHg, mean plus or minus SE, over a 2-wk period, whereas those treated with DOC and untreated controls showed no significant change. On normal diets, plasma renin concentration (PRC) of methylprednisolone-treated rats was significantly higher than that of DOC-treated rats. Methylprednisolone treatment also resulted in a significant elevation of plasma renin substrate concentration (PRS). Calculated plasma renin activity (PRA) was highest in methylprednisolone-treated rats, significantly above that of the DOC and no-steroid groups. NaCl supplementation resulted in a significant fall in PRC and PRA in all three groups; however, PRS remained significantly above normal in the methylprednisolone-treated rats. The pressor effect of angiotensin II was slightly increased in methylprednisolone-treated rats. Infusion of [Sar1,Ala8]angiotensin II (P-113) in methylprednisolone-treated rats resulted in a significant fall in diastolic arterial pressure. The results imply that methylprednisolone hypertension in the rat may be in part angiotensin dependent.


1975 ◽  
Vol 228 (2) ◽  
pp. 369-375 ◽  
Author(s):  
JS Carvalho ◽  
R Shapiro ◽  
P Hopper ◽  
LB Page

Micromethods for measurement of plasma renin concentration (PRC) and plasma renin-substrate concentration (PSC) have been developed for rat plasma with radioimmunoassay of angiotensin I. An improved technique for aortic implantation of plastic cannulas was developed for use in experiments 1-2 wk in duration. The effects on components of renin system of anesthesia and tail cutting were studied. Arterial blood was sampled through cannulas without animal manipulation. PRC varied little in unanesthetized rats, was moderately and variably increased during pentobarbital anesthesia, and was markedly and consistently elevated during ether anesthesia. PSC was unchanged during anesthesia. PRC was increased in blood obtained by tail cutting within 1-2 min after cutting. With the use of the methods and techniques described here serial studies of the renin system in plasma of unanesthetized rats are shown to be feasible. A role for the sympathetic nervous system in the mediation of renin secretion by ether is proposed.


1982 ◽  
Vol 52 (6) ◽  
pp. 1438-1443 ◽  
Author(s):  
P. Escourrou ◽  
P. R. Freund ◽  
L. B. Rowell ◽  
D. G. Johnson

We conducted a two-part study to determine whether the renin-angiotensin system contributes to the rise in splanchnic vascular resistance (SVR) during heat stress (rectal temperature was raised 1 degree C). In experiment 1 (control) seven men on a normal salt diet were directly heated (water-perfused suits) for 40–50 min. Arterial pressure (85 Torr) was unchanged; plasma renin activity (PRA) rose from 102 to 239 ng angiotensin I.100 ml-1.3 h-1; and SVR increased 73% (from 63 to 109 units). Experiment 2 was a repetition of experiment 1 on the same subjects, except that propranolol (10 mg iv) was given at the onset of heating to block renin release. Propranolol attenuated the rise in heart rate and reduced mean arterial pressure from 82 to 72 Torr; it blocked the rise in PRA with heating in two subjects, reduced it in three, but increased it in two. Although changes in SVR paralleled those in PRA in three subjects, SVR still rose 60% (from 58 to 99 units) after PRA rise was blocked. In both experiments, plasma norepinephrine concentration rose indicating increased sympathetic nervous activity. During mild heat stress, increased PRA is not a major factor in the increase of SVR.


1994 ◽  
Vol 4 (12) ◽  
pp. 1987-1994 ◽  
Author(s):  
T Shinzato ◽  
M Miwa ◽  
S Nakai ◽  
H Morita ◽  
H Odani ◽  
...  

First, this investigation showed that plasma levels of inosine, hypoxanthine, and xanthine, which are metabolites of adenosine, rose sharply when blood pressure dropped suddenly along with symptoms during a hemodialysis session (sudden hypotension), but not when it decreased gradually with eventual symptoms (gradual hypotension). Because adenosine has an action to dilate vessels, this result indicates the possibility that the increased release of adenosine would be a cause of sudden hypotension. Second, it was found that the frequency of sudden hypotension decreases with the administration of caffeine, which is an adenosine-receptor antagonist, whereas the frequency of gradual hypotension did not change. This result supports the above-mentioned hypothesis that adenosine may well be a mediator of sudden hypotension, but not of gradual hypotension. Third, our investigation demonstrated no significant differences in plasma norepinephrine level, in plasma renin activity, or in mean blood pressure between the hemodialysis session in which caffeine was administered and the session in which a placebo was given. These findings suggest that the effect of caffeine administration to prevent sudden hypotension is not mediated by the stimulation of the sympathetic nervous system or activation of the renin-angiotensin system, but by the adenosine-receptor antagonism.


1981 ◽  
Vol 240 (6) ◽  
pp. F545-F550
Author(s):  
P. C. Wong ◽  
B. G. Zimmerman ◽  
P. Friedman

The mechanism of enhanced renal prostaglandin (PG) release in the in situ pump-perfused kidney was studied in anesthetized dogs. Pump perfusion caused a gradual decrease in mean arterial blood pressure (BP) from 163 to 128 mmHg over an 80-min period. The renal arteriovenous level of PGE and plasma renin activity (PRA) were increased by a mean of 1.36 ng/ml and 22 ng AI.ml-1.h-1, respectively. In a second group of dogs treated with captopril, pump perfusion did not alter PGE or BP, but increased PRA. When the animals were treated with indomethacin, the renal arteriovenous levels of PGE and 6-keto-PGF1 alpha were not changed but PRA increased during the 80 min of pump perfusion. In a fourth group of dogs that had undergone renal denervation and phentolamine treatment, changes in PGE and BP occurred during pump perfusion similar to the changes in the control group, and 6-keto-PGF1 alpha release by the kidney also increased. The results indicate that renal PG release during group perfusion is mainly due to the activation of the renin-angiotensin system and that the hypotension due to pump perfusion is PG mediated.


1978 ◽  
Vol 55 (s4) ◽  
pp. 319s-321s ◽  
Author(s):  
H. Ibsen ◽  
A. Leth ◽  
H. Hollnagel ◽  
A. M. Kappelgaard ◽  
M. Damkjaer Nielsen ◽  
...  

1. Twenty-five patients with mild essential hypertension, identified during a survey of a population born in 1936, were investigated. 2. Basal and post-frusemide values for plasma renin concentration and plasma angiotensin II concentration did not differ markedly from reference values in 25 40-year-old control subjects. In the untreated, sodium replete state saralasin infusion (5·4 nmol min−1 kg−1) produced an increase in mean arterial pressure in the patient group as a whole. 3. Twenty-one patients were treated with hydrochlorothiazide, mean dose 75 mg/day for 3 months. Pre-treatment, frusemide-stimulated plasma renin concentration and plasma angiotensin II, and values during thiazide treatment were higher in ‘non-responders’ (n = 10) to hydrochlorothiazide treatment than in ‘thiazide-responders’ (n = 11). During thiazide therapy, angiotensin II blockade induced a clear-cut decrease in mean arterial pressure in all ‘thiazide-nonresponders’ whereas only four out of 11 ‘thiazide-responders’ showed a borderline decline in mean arterial pressure. 4. The functional significance of the renin—angiotensin system in mild essential hypertension emerges only after thiazide treatment. Thiazide-induced stimulation of the renin—angiotensin system counter-balanced the hypotensive effect of thiazide in some 40% of the treated patients. Thus the responsiveness of the renin—angiotensin system determined the blood pressure response to thiazide treatment.


2000 ◽  
Vol 279 (3) ◽  
pp. R1105-R1111 ◽  
Author(s):  
Yoshio Takei ◽  
Takamasa Tsuchida

The role of ANG II, a potent dipsogenic hormone, in copious drinking of seawater eels was examined. SQ-14225 (SQ), an angiotensin-converting enzyme inhibitor, infused intra-arterially at 0.01–1 μg · kg−1 · min−1, depressed drinking and arterial blood pressure in a dose-dependent manner. The inhibition was accompanied by a small decrease in plasma ANG II concentration, which became significant at 1 μg · kg−1 · min−1. After the infusate was changed back to the vehicle, the depression of drinking and arterial pressure continued for >2 h, although plasma ANG II concentration rebounded above the level before SQ infusion. By contrast, infusion of anti-ANG II serum (0.01–1 μg · kg−1 · min−1) did not suppress drinking and arterial pressure, although plasma ANG II concentration decreased to undetectable levels. Plasma atrial natriuretic peptide and plasma osmolality, which influence drinking rate in eels, did not change during SQ or antiserum infusions. These results suggest that the renin-angiotensin system plays only a minor role in the vigorous drinking observed in seawater eels. The results also suggest that the antidipsogenic and vasodepressor effects of SQ in seawater eels are not due solely to the inhibition of ANG II formation in plasma.


1995 ◽  
Vol 268 (6) ◽  
pp. H2267-H2273 ◽  
Author(s):  
A. Zanchi ◽  
N. C. Schaad ◽  
M. C. Osterheld ◽  
E. Grouzmann ◽  
J. Nussberger ◽  
...  

This study was designed to assess the role of renin and of the sympathoadrenal system in the maintenance of the hypertension induced by chronic nitric oxide synthase (NOS) inhibition in rats kept on a normal (RS) or a low-sodium (LS) diet. With the administration of NG-nitro-L-arginine methyl ester (L-NAME) in drinking water (0.4 milligrams) for 6 wk, mean intra-arterial blood pressure rose to a similar extent to 201 mmHg in the RS and 184 mmHg in the LS animals. Simultaneously, plasma norepinephrine was increased to 838 and 527 pg/ml and epinephrine to 2,041 and 1,341 pg/ml in RS and LS, respectively. Plasma neuropeptide Y levels did not change. Plasma renin activity rose to 21 ng.ml-1.h-1 in RS but remained at 44 ng.ml-1.h-1 in the LS. Both losartan (10 mg/kg) and phentolamine (0.1 mg/kg) intravenous bolus injections reduced blood pressure considerably in the L-NAME hypertensive animals. Whole brain NOS activity was reduced by 84%. Hypertension induced by chronic NOS inhibition in LS as well as in RS fed rats seems to be sustained by an interaction of several mechanisms, including the activation of the sympathetic nervous system and the renin-angiotensin system.


Sign in / Sign up

Export Citation Format

Share Document