scholarly journals The role of hypothalamic ingestive behavior controllers in generating dehydration anorexia: a Fos mapping study

2008 ◽  
Vol 295 (4) ◽  
pp. R1009-R1019 ◽  
Author(s):  
Dawna Salter-Venzon ◽  
Alan G. Watts

Giving rats 2.5% saline to drink for 3–5 days simply and reliably generates anorexia. Despite having the neurochemical and hormonal markers of negative energy balance, dehydrated anorexic rats show a marked suppression of spontaneous food intake, as well as the feeding that is usually stimulated by overnight starvation or a 2-deoxy-d-glucose (2DG) challenge. These observations are consistent with a dehydration-dependent inhibition of the core circuitry that controls feeding. We hypothesize that this inhibition is directed at those neurons in the paraventricular nucleus and lateral hypothalamic area that constitute the hypothalamic “behavior controller” for feeding rather than their afferent inputs from the arcuate nucleus or hindbrain that convey critical feeding-related sensory information. To test this hypothesis, we mapped and quantified the Fos-immunoreactive response to 2DG in control and dehydrated rats drinking 2.5% saline. Our rationale was that regions showing an attenuated Fos response to 2DG in dehydrated animals would be strong candidates as the targets of dehydration-induced suppression of 2DG feeding. We found that the Fos response to combined dehydration and 2DG was attenuated only in the lateral hypothalamic area, with dehydration alone increasing Fos in the lateral part of the paraventricular nucleus. In the arcuate nucleus and those regions of the hindbrain that provide afferent inputs critical for the feeding response to 2DG, the Fos response to 2DG was unaffected by dehydration. Therefore, dehydration appears to target the lateral hypothalamic area and possibly the lateral part of the paraventricular nucleus to suppress the feeding response to 2DG.

2017 ◽  
Vol 68 (2) ◽  
pp. 129-136 ◽  
Author(s):  
Mariko So ◽  
Hirofumi Hashimoto ◽  
Reiko Saito ◽  
Yukiyo Yamamoto ◽  
Yasuhito Motojima ◽  
...  

Abstract Orexin-A and -B, and ghrelin are potent orexigenic peptides. The effects of ACT462206, a novel dual orexin receptor antagonist (DORA), on ghrelin-induced feeding were examined in adult male Wistar rats. Hyperphagia induced by the intracerebroventricular (icv) administration of ghrelin was significantly suppressed for at least 2 h by pretreatment with icv administration of DORA. A marked increase was observed in the number of neurons showing Fos immunoreactivity in the paraventricular nucleus, arcuate nucleus and lateral hypothalamic area (LHA), 90 min after icv administration of ghrelin. Pretreatment with DORA significantly decreased the number of Fos-immunoreactive (IR) neurons; however, Fos immunoreactivity remained significantly increased. Double-immunostaining for Fos and orexin-A showed that many orexin-A-IR neurons in the LHA coexisted with Fos immunoreactivity after icv administration of ghrelin, but their number was reduced significantly by DORA pretreatment. These results suggest that centrally administered ghrelin may activate the orexinergic and non-orexinergic pathways responsible for the regulation of feeding.


2008 ◽  
Vol 95 (3) ◽  
pp. 484-491 ◽  
Author(s):  
Sérgio Murilo Steffens ◽  
Isabel Cristina da Cunha ◽  
Danielle Beckman ◽  
Ana Paula Fraga Lopes ◽  
Moacir Serralvo Faria ◽  
...  

Endocrinology ◽  
2008 ◽  
Vol 149 (7) ◽  
pp. 3617-3625 ◽  
Author(s):  
Floor Remmers ◽  
Linda A. W. Verhagen ◽  
Roger A. H. Adan ◽  
Henriette A. Delemarre-van de Waal

Rats subjected to early postnatal food restriction (FR) show persistent changes in energy balance. The hypothalamus plays a major role in the regulation of energy balance. Therefore, we hypothesized that early postnatal food restriction induces developmental programming of hypothalamic gene expression of neuropeptides involved in this regulation. In the hypothalamus of juvenile and middle-aged rats that were raised in control (10 pups) or FR litters (20 pups), gene expression was investigated for neuropeptide Y (NPY), agouti-related protein (AgRP), proopiomelanocortin (POMC), and cocaine- and amphetamine-regulated transcript (CART) in the arcuate nucleus (ARC); CRH and TRH in the paraventricular nucleus; and melanin-concentrating hormone (MCH) and orexin in the lateral hypothalamic area. Early postnatal FR acutely and persistently reduced body size. Juvenile FR rats had significantly reduced CART gene expression and increased MCH expression. In middle-aged FR rats, POMC and CART mRNA levels were significantly reduced. The ratio between expression of the ARC orexigenic peptides (NPY and AgRP) and anorexigenic peptides (POMC and CART) was increased in juvenile, but not in middle-aged, FR rats. These results suggest that in neonatal rats, FR already triggers the ARC, and to a lesser extent the lateral hypothalamic area, but not the paraventricular nucleus, to increase expression of orexigenic relative to anorexigenic peptides. In addition, with enduring small body size and normalized hypothalamic gene expression, the adult FR rats appeared to have accepted this smaller body size as normal. This suggests that the body weight set-point was differently programmed in animals with early postnatal FR.


Sign in / Sign up

Export Citation Format

Share Document