Effect of secretin on renal blood flow, interstitial pressure, and sodium excretion

1977 ◽  
Vol 232 (2) ◽  
pp. F147-F151 ◽  
Author(s):  
G. R. Marchand ◽  
C. E. Ott ◽  
F. C. Lang ◽  
R. F. Greger ◽  
F. G. Knox

Most renal vasodilators are natriuretic. However, secretin increases renal blood flow (RBF) markedly but produces only a very slight increase in sodium excretion (UNaV). To investigate this observation further, the relationship between vasodilatation, interstitial pressure (IP), and UNaV was studied in dogs. Intrarenal infusion of secretin increased RBF (delta=107+/-19 ml/min). The IP, as measured from chronically implanted polyethylene matrix capsules, was not significantly changed (delta=-0.3+/-0.5 mmHg). UNaV was slightly, although significantly, increased (delta=19+/-4 mueq/min). Following a similar increase in RBF with an intrarenal infusion of acetylcholine (ACh), IP and UNaV increased markedly (delta=8.2+/-0.8 mmHg and 174+/-23 mueq/min, respectively). Neither secretin nor ACh) altered glomerular filtration rate or blood pressure. Both secretin and ACh produced comparable increases in peritubule capillary(delta=5+/-1 and 7.5+/-1.4 mmHg, respectively) and free-flow tubule pressure (delta=7+/-2 and 9.5+/-1.4 mmHg, respectively). In summary, the usual relationship between vasodilatation and IP was dissociated during secretin infusion, whereas the relationship between IP and natriuresis was not dissociated.

1990 ◽  
Vol 78 (2) ◽  
pp. 165-168 ◽  
Author(s):  
Paolo Madeddu ◽  
Nicola Glorioso ◽  
Aldo Soro ◽  
Paolo Manunta ◽  
Chiara Troffa ◽  
...  

1. To evaluate whether sodium intake can modulate the action of endogenous kinins on renal function and haemodynamics, a receptor antagonist of bradykinin was infused in conscious normotensive rats maintained on either a normal or a low sodium diet. 2. The antagonist inhibited the hypotensive effect of exogenously administered bradykinin. It did not change the vasodepressor effect of acetylcholine, dopamine or prostaglandin E2. 3. The antagonist did not affect mean blood pressure, glomerular filtration rate, renal blood flow or urinary sodium excretion, in rats on sodium restriction. It did not change mean blood pressure, glomerular filtration rate or urinary sodium excretion, but decreased renal blood flow, in rats on a normal sodium intake. 4. The kallikrein–kinin system has a role in the regulation of renal blood flow in rats on a normal sodium diet.


1980 ◽  
Vol 238 (4) ◽  
pp. F279-F282 ◽  
Author(s):  
J. C. Burnett ◽  
F. G. Knox

Studies were performed on anesthetized dogs to determine the relationship of interstitial pressure to sodium excretion during renal vein constriction in the presence and absence of volume expansion. Renal interstitial pressure was measured from implanted capsules during basal renal venous pressure and increased pressures of 10, 20, 30, and 40 mmHg. A positive relationship between renal venous pressure and interstitial pressure was demonstrated in hydropenia and in volume expansion, with markedly higher interstitial pressures obtained in volume expansion. A positive correlation was demonstrated between fractional sodium excretion and renal interstitial pressure in hydropenia as compared to a significant negative correlation in volume expansion. Negative correlations were demonstrated in volume expansion between renal interstitial pressure and glomerular filtration rate and renal blood flow as compared to no significant change in these parameters in hydropenia. Accordingly, a positive correlation was demonstrated between renal interstitial pressure and sodium excretion in hydropenia but not in volume expansion. Volume expansion was characterized by higher interstitial pressure and decreased sodium excretion in association with decreased renal blood flow and glomerular filtration rate.


1987 ◽  
Vol 65 (11) ◽  
pp. 2219-2224 ◽  
Author(s):  
J. Krayacich ◽  
R. L. Kline ◽  
P. F. Mercer

Denervation supersensitivity in chronically denervated kidneys increases renal responsiveness to increased plasma levels of norepinephrine. To determine whether this effect is caused by presynaptic (i.e., loss of uptake) or postsynaptic changes, we studied the effect of continuous infusion of norepinephrine (330 ng/min, i.v.) and methoxamine (4 μg/min, i.v.), an α1 adrenergic agonist that is not taken up by nerve terminals, on renal function of innervated and denervated kidneys. Ganglionic blockade was used to eliminate reflex adjustments in the innervated kidney and mean arterial pressure was maintained at preganglionic blockade levels by an infusion of arginine vasopressin. With renal perfusion pressure controlled there was a significantly greater decrease in renal blood flow (−67 ± 9 vs. −33 ± 8%), glomerular filtration rate (−60 ± 9 vs. −7 ± 20%), urine flow (−61 ± 7 vs. −24 ± 11%), sodium excretion (−51 ± 15 vs. −32 ± 21%), and fractional excretion of sodium (−50 ± 9 vs. −25 ± 15%) from the denervated kidneys compared with the innervated kidneys during the infusion of norepinephrine. During the infusion of methoxamine there was a significantly greater decrease from the denervated compared with the innervated kidneys in renal blood flow (−54 ± 10 vs. −30 ± 14%), glomerular filtration rate (−51 ± 11 vs. −19 ± 17%), urine flow (−55 ± 10 vs. −39 ± 10%), sodium excretion (−70 ± 9 vs. −59 ± 11%), and fractional excretion of sodium (−53 ± 10 vs. −41 ± 10%). These results suggest that vascular and tubular supersensitivity to norepinephrine in chronically denervated kidneys is due to postsynaptic changes involving α1-adrenergic receptors.


1960 ◽  
Vol 198 (6) ◽  
pp. 1279-1283 ◽  
Author(s):  
Lewis C. Mills ◽  
John H. Moyer ◽  
Carrol A. Handley

The effects of l-epinephrine, l-norepinephrine, phenylephrine, methoxamine, metaraminol and mephentermine on renal hemodynamics were studied in six groups of dogs. Although comparable rises in blood pressure were obtained, there were marked differences in the effects on renal hemodynamics. While infusion of mephentermine led to only slight reductions in glomerular filtration rate and renal blood flow, and only a slight increase in renal vascular resistance, methoxamine produced a marked fall in flow and a marked increase in resistance. The other agents tested had effects which were intermediate between these two. The effects of these same drugs on renal hemodynamics were also compared in dogs made hypotensive by bleeding. While blood pressure increased significantly in all groups, glomerular filtration rate and renal blood flow increased significantly only during infusion of mephentermine, metaraminol and phenylephrine. Since assays relative to the inherent vasodilator properties of these agents revealed epinephrine to be the only agent with marked activity, it seems unlikely that the observed effects were due to this factor. It is concluded that the observed changes were due to a greater reactivity of renal vascular vasoconstrictor adrenergic receptors with certain sympathicomimetic drugs than those of the vasculature in general.


1984 ◽  
Vol 247 (3) ◽  
pp. F475-F479 ◽  
Author(s):  
J. A. Haas ◽  
T. G. Hammond ◽  
J. P. Granger ◽  
E. H. Blaine ◽  
F. G. Knox

Intrarenal infusion of the natural prostaglandin PGE2 increases renal blood flow, renal interstitial hydrostatic pressure, and urinary sodium excretion. A newly synthesized prostaglandin analogue, 4-3-[3-[2-(1-hydroxycyclohexyl)- ethyl]-4-oxo-2-thiazolidinyl]propyl benzoic acid, increases renal blood flow without increasing sodium excretion. To investigate the role of renal interstitial hydrostatic pressure in this dissociation, comparisons were made between PGE2 and the prostaglandin analogue. Intrarenal infusion of PGE2 increased renal blood flow, renal interstitial hydrostatic pressure, and urinary sodium excretion. Following a similar increase in renal blood flow with intrarenal infusion of prostaglandin analogue, renal interstitial hydrostatic pressure and urinary sodium excretion were not changed. To determine whether increases in urinary sodium excretion due to PGE2 infusion are causally related to the increase in renal interstitial hydrostatic pressure rather than to the increase in renal blood flow, responses to PGE2 were obtained in the absence of increases in interstitial pressure. When renal interstitial hydrostatic pressure was held constant, urinary sodium excretion did not change although there was a marked increase in renal blood flow. We conclude that increased renal interstitial hydrostatic pressure is necessary to produce an increase in urinary sodium excretion with prostaglandin-mediated renal vasodilation.


1989 ◽  
Vol 17 (03n04) ◽  
pp. 203-210
Author(s):  
Huei-Yann Tsai ◽  
Ruey-Tean Chiang ◽  
Tzu-Wei Tan ◽  
Ho-Chan Chen

Vandellia cordifolia (COLSM) G, DON of Scrophulariaceae (V. cordifolia) is an annual wild herb indigenous to Taiwan. It can be found in plains, low altitudes, swampy places, and paddy fields. Taiwanese folk physicians use it in "nephritis, uremia, furnucle, carbuncle." The LD50 (95% confidence limit) of the crude exract of V. codifolia given by the oral route was more than 10 g/kg in rats. By the intraperitoneal route, it was 4.6 g/kg (4.35–4.93), The extraction rate was 16.6%. We studied its effects on renal functions and blood pressure and found that (1) it had diuretic effect on normal rats, (2) it decreased glomerular filtration rate and renal blood flow on normal kidneys in rabbits, (3) it had no effects on glomerular filtration rate and renal blood flow on glycerin-induced insufficient kidneys in rabbits, (4) it had diuretic effects on both normal and glycerin-induced insufficient kidneys in rabbits, (5) it could inhibit Na+ and K+ reabsorptionn on normal and glycerin-induced insufficient kidneys in rabbits, (6) it had hypertensive effect and this effect could be blocked by phenoxybenzamine. From the above facts, we conclude that V, cordifolia had diuretic effect and it may act on renal tubules to inhibit Na+ and K+ reabsorption.


Sign in / Sign up

Export Citation Format

Share Document