Calcitonin stimulates H+ secretion in rat kidney intercalated cells

1996 ◽  
Vol 271 (6) ◽  
pp. F1217-F1223 ◽  
Author(s):  
E. Siga ◽  
P. Houillier ◽  
B. Mandon ◽  
G. Moine ◽  
C. de Rouffignac

Calcitonin (CT) modulates rat intercalated cell (IC) functions of the rat cortical collecting duct (CCD) [E. Siga, B. Mandon, N. Roinel, and C. de Rouffignac. Am.J. Physiol. 264 (Renal Fluid Electrolyte Physiol. 33): F221-F227, 1993]. To characterize the specific function regulated by CT, rat CCDs were perfused in vitro. Total CO2 net fluxes (JtCO2, pmol.mm-1.min-1) and transepithelial voltage (Vt) were measured. Bath CT induced a significant tCO2 reabsorption. This effect was higher on CCDs harvested from acid-loaded than from control rats. When HCO3- secretion was blocked, CT also raised JtCO2 and Vt. When H+ secretion was blocked, CT was ineffective on JtCO2 and Vt. When HCO3- secretion was increased and H+ secretion was inhibited, CT did not change JtCO2, whereas isoproterenol (ISO) increased tCO2 secretion from -13.5 +/- 2.0 (control) to -19.0 +/- 2.4 (ISO). In rat CCD studied under these same preceding conditions plus luminal amiloride to block the Na(+)-dependent Vt, CT did not alter Vt, whereas ISO increased it by 4.5 +/- 0.7 mV. We conclude from these data that, in the rat CCD, calcitonin stimulates H+ secretion, likely by so-called alpha-intercalated (alpha-IC) cells, whereas ISO stimulates HCO3- secretion, likely by so-called beta-IC cells.

1999 ◽  
Vol 277 (4) ◽  
pp. F567-F574 ◽  
Author(s):  
Shuichi Tsuruoka ◽  
George J. Schwartz

The connecting tubule (CNT) contains α-(H+-secreting) and β-([Formula: see text]-secreting) intercalated cells and is therefore likely to contribute to acid-base homeostasis. To characterize the mechanisms of [Formula: see text]transport in the rabbit CNT, in which there is little definitive data presently available, we microdissected the segments from the superficial cortical labyrinth, perfused them in vitro, measured net[Formula: see text] transport ( J [Formula: see text] ) by microcalorimetry, and examined the effects of several experimental maneuvers. Mean ± SE basal J [Formula: see text] was −3.4 ± 0.1 pmol ⋅ min−1 ⋅ mm−1(net [Formula: see text] secretion), and transepithelial voltage was −13 ± 1 mV ( n = 47). Net[Formula: see text] secretion was markedly inhibited by removal of luminal Cl− or application of basolateral H+-ATPase inhibitors (bafilomycin or concanamycin), maneuvers that inhibit β-intercalated cell function. Net [Formula: see text] secretion was not affected by inhibitors of α-intercalated cell function (basolateral Cl− removal, basolateral DIDS, or luminal H+-ATPase inhibitors). Net [Formula: see text] secretion was stimulated by isoproterenol and inhibited by acetazolamide. These data indicate that 1) CNTs secrete[Formula: see text] via an apical DIDS-insensitive Cl−/[Formula: see text]exchanger, mediated by a basolateral bafilomycin- and concanamycin-sensitive H+-ATPase; 2) inhibition of cytosolic carbonic anhydrase decreases [Formula: see text] secretion; and 3) stimulation of β-adrenergic receptors increases [Formula: see text] secretion. The failure to influence net [Formula: see text]transport by inhibiting α-intercalated cell apical H+-ATPases or basolateral Cl−/[Formula: see text]exchange suggests that the CNT has fewer functioning α-intercalated cells than the cortical collecting duct. These are the first studies to examine the rate and mechanisms of[Formula: see text] secretion by the rabbit CNT; this is clearly an important segment in mediating acid-base homeostasis.


2015 ◽  
Vol 309 (3) ◽  
pp. F259-F268 ◽  
Author(s):  
Masayoshi Nanami ◽  
Vladimir Pech ◽  
Yoskaly Lazo-Fernandez ◽  
Alan M. Weinstein ◽  
Susan M. Wall

Epithelial Na+ channel (ENaC) blockade stimulates stilbene-sensitive conductive Cl− secretion in the mouse cortical collecting duct (CCD). This study's purpose was to determine the co-ion that accompanies benzamil- and DIDS-sensitive Cl− flux. Thus transepithelial voltage, VT, as well as total CO2 (tCO2) and Cl− flux were measured in CCDs from aldosterone-treated mice consuming a NaCl-replete diet. We reasoned that if stilbene inhibitors (DIDS) reduce conductive anion secretion they should reduce the lumen-negative VT. However, during ENaC blockade (benzamil, 3 μM), DIDS (100 μM) application to the perfusate reduced net H+ secretion, which increased the lumen-negative VT. Conversely, ENaC blockade alone stimulated H+ secretion, which reduced the lumen-negative VT. Application of an ENaC inhibitor to the perfusate reduced the lumen-negative VT, increased intercalated cell intracellular pH, and reduced net tCO2 secretion. However, benzamil did not change tCO2 flux during apical H+-ATPase blockade (bafilomycin, 5 nM). The increment in H+ secretion observed with benzamil application contributes to the fall in VT observed with application of this diuretic. As such, ENaC blockade reduces the lumen-negative VT by inhibiting conductive Na+ absorption and by stimulating H+ secretion by type A intercalated cells. In conclusion, 1) in CCDs from aldosterone-treated mice, benzamil application stimulates HCl secretion mediated by the apical H+-ATPase and a yet to be identified conductive Cl− transport pathway; 2) benzamil-induced HCl secretion is reversed with the application of stilbene inhibitors or H+-ATPase inhibitors to the perfusate; and 3) benzamil reduces VT not only by inhibiting conductive Na+ absorption, but also by stimulating H+ secretion.


1994 ◽  
Vol 267 (4) ◽  
pp. F583-F591 ◽  
Author(s):  
L. H. Kudo ◽  
C. T. Hawk ◽  
J. A. Schafer

Studies were conducted to determine whether the cortical collecting duct (CCD) of the Dahl salt-resistant rat (inbred Rapp strain; R/Jr) exhibits the same responses to deoxycorticosterone (DOC; 2.5 mg as a depot injection in vivo, 3-8 days before experimentation) and arginine vasopressin (AVP, 220 pM in vitro) as the Sprague-Dawley (SD) [L. Chen, S.K. Williams, and J.A. Schafer. Am. J. Physiol. 259 (Renal Fluid Electrolyte Physiol. 28): F147-F156, 1990] and Dahl salt-sensitive (inbred Rapp strain, S/Jr) [C.T. Hawk and J.A. Schafer. Am. J. Physiol. 260 (Renal Fluid Electrolyte Physiol. 29): F471-F478, 1991] CCD. Qualitatively, the R/Jr CCD responded as in the other two strains: AVP elevated the osmotic water permeability (Pf, micron/s) from 0 to approximately 1,200; either AVP or DOC, when used alone, increased the lumen-to-bath 22Na+ flux (Jl-->b, pmol.min-1.mm-1) from the control range of 20-25 to approximately 40 and hyperpolarized the transepithelial voltage. AVP and DOC effects were synergistic, elevating Jl-->b to 90 +/- 5 (mean +/- SE) with both hormones, but this value was significantly lower than observed previously in both the SD and the S/Jr CCD, 125 +/- 6 and 140 +/- 6, respectively. However, bath-to-lumen fluxes (Jb--l) were also significantly lower than observed in the SD and S/Jr CCD. Because net fluxes (Jnet) in these experiments can be determined only as nonpaired differences between unidirectional fluxes, it is uncertain whether Jnet values in the R/Jr CCD are significantly lower than in the SD or S/Jr CCD.(ABSTRACT TRUNCATED AT 250 WORDS)


2013 ◽  
Vol 304 (4) ◽  
pp. F422-F431 ◽  
Author(s):  
Jesse M. Bishop ◽  
Hyun-Wook Lee ◽  
Mary E. Handlogten ◽  
Ki-Hwan Han ◽  
Jill W. Verlander ◽  
...  

The ammonia transporter family member, Rh B Glycoprotein (Rhbg), is an ammonia-specific transporter heavily expressed in the kidney and is necessary for the normal increase in ammonia excretion in response to metabolic acidosis. Hypokalemia is a common clinical condition in which there is increased renal ammonia excretion despite the absence of metabolic acidosis. The purpose of this study was to examine Rhbg's role in this response through the use of mice with intercalated cell-specific Rhbg deletion (IC-Rhbg-KO). Hypokalemia induced by feeding a K+-free diet increased urinary ammonia excretion significantly. In mice with intact Rhbg expression, hypokalemia increased Rhbg protein expression in intercalated cells in the cortical collecting duct (CCD) and in the outer medullary collecting duct (OMCD). Deletion of Rhbg from intercalated cells inhibited hypokalemia-induced changes in urinary total ammonia excretion significantly and completely prevented hypokalemia-induced increases in urinary ammonia concentration, but did not alter urinary pH. We conclude that hypokalemia increases Rhbg expression in intercalated cells in the cortex and outer medulla and that intercalated cell Rhbg expression is necessary for the normal increase in renal ammonia excretion in response to hypokalemia.


1992 ◽  
Vol 262 (1) ◽  
pp. F30-F35 ◽  
Author(s):  
H. Furuya ◽  
K. Tabei ◽  
S. Muto ◽  
Y. Asano

Insulin is known to play an important role in the regulation of extrarenal K homeostasis. Previous clearance studies have shown that insulin decreases urinary K excretion, but the responsible nephron segments have not been identified. In this microperfusion study, in vitro, the effect of insulin on K transport in the cortical collecting duct (CCD), which is thought to be an important segment for regulation of the final urinary K excretion, was investigated. Basolateral insulin (10(-6) M) significantly inhibited net K secretion by 20% (mean JK = -26.2 +/- 4.2 peq.mm-1.min-1 for controls compared with -21.1 +/- 3.4 with insulin, P less than 0.001) and depolarized the transepithelial voltage (VT, from -14.6 +/- 3.5 to -10.8 +/- 3.5 mV, P less than 0.005), recovery did not occur over 60 min. Insulin (10(-11)-10(-5) M) depressed K secretion and depolarized the VT in a concentration-dependent manner. The half-maximal concentration was 5 x 10(-10) M, which is within the physiological range of plasma insulin concentration. In tubules of deoxycorticosterone acetate-treated rabbits, insulin also produced a significant fall in K secretion (from -43.4 +/- 7.5 to -36.1 +/- 5.7 peq.mm-1.min-1, P less than 0.05). Although luminal Ba (2 mM) decreased K secretion (from -14.4 +/- 2.9 to -7.0 +/- 1.7 peq.mm-1.min-1), basolateral insulin (10(-6) M) inhibited K secretion further (to -4.7 +/- 1.3 peq.mm-1.min-1, P less than 0.01).(ABSTRACT TRUNCATED AT 250 WORDS)


2015 ◽  
Vol 309 (3) ◽  
pp. F251-F258 ◽  
Author(s):  
Masayoshi Nanami ◽  
Yoskaly Lazo-Fernandez ◽  
Vladimir Pech ◽  
Jill W. Verlander ◽  
Diana Agazatian ◽  
...  

Inhibition of the epithelial Na+ channel (ENaC) reduces Cl− absorption in cortical collecting ducts (CCDs) from aldosterone-treated rats and mice. Since ENaC does not transport Cl−, the purpose of the present study was to explore how ENaC modulates Cl− absorption in mouse CCDs perfused in vitro. Therefore, we measured transepithelial Cl− flux and transepithelial voltage in CCDs perfused in vitro taken from mice that consumed a NaCl-replete diet alone or the diet with aldosterone administered by minipump. We observed that application of an ENaC inhibitor [benzamil (3 μM)] to the luminal fluid unmasks conductive Cl− secretion. During ENaC blockade, this Cl− secretion fell with the application of a nonselective Cl− channel blocker [DIDS (100 μM)] to the perfusate. While single channel recordings of intercalated cell apical membranes in split-open CCDs demonstrated a Cl− channel with properties that resemble the ClC family of Cl− channels, ClC-5 is not the primary pathway for benzamil-sensitive Cl− flux. In conclusion, first, in CCDs from aldosterone-treated mice, most Cl− absorption is benzamil sensitive, and, second, benzamil application stimulates stilbene-sensitive conductive Cl− secretion, which occurs through a ClC-5-independent pathway.


1985 ◽  
Vol 248 (3) ◽  
pp. C348-C356 ◽  
Author(s):  
D. Brown ◽  
J. Roth ◽  
L. Orci

The lectin-gold technique was used to detect Helix pomatia and Dolichos biflorus lectin binding sites directly on semithin and thin sections of rat kidney collecting ducts. Intercalated cell apical plasma membranes and the membranes of apical cytoplasmic vesicles were heavily labeled in the cortex and outer stripe of the outer medulla but were negative or very weakly labeled in the inner stripe and inner medulla. In contrast, clear cell apical membranes were labeled along the entire length of the collecting duct. Double labeling of semithin cryostat sections with a specific antibody and lectin-gold complexes was used to demonstrate that the intercalated cells in all regions studied contained carbonic anhydrase, even though the lectin binding differed. These results indicate that, in terms of their glycocalyx composition, intercalated cells represent a heterogeneous population in different regions of the collecting duct.


1999 ◽  
Vol 10 (1) ◽  
pp. 1-12 ◽  
Author(s):  
JIN KIM ◽  
YOUNG-HEE KIM ◽  
JUNG-HO CHA ◽  
C. CRAIG TISHER ◽  
KIRSTEN M. MADSEN

Abstract. At least two populations of intercalated cells, type A and type B, exist in the connecting tubule (CNT), initial collecting tubule (ICT), and cortical collecting duct (CCD). Type A intercalated cells secrete protons via an apical H+ - ATPase and reabsorb bicarbonate by a band 3-like Cl-/HCO3- exchanger, AE1, located in the basolateral plasma membrane. Type B intercalated cells secrete bicarbonate by an apical Cl-/HCO3- exchanger that is distinct from AE1 and remains to be identified. They express H+ -ATPase in the basolateral plasma membrane and in vesicles throughout the cytoplasm. A third type of intercalated cell with apical H+ -ATPase, but no AE1, has been described in the CNT and CCD of both rat and mouse. The prevalence of the third cell type is not known. The aim of this study was to characterize and quantify intercalated cell subtypes, including the newly described third non A-non B cell, in the CNT, ICT, and CCD of the rat and mouse. A triple immunolabeling procedure was developed in which antibodies to H+ -ATPase and band 3 protein were used to identify subpopulations of intercalated cells, and segment-specific antibodies were used to identify distal tubule and collecting duct segments. In both rat and mouse, intercalated cells constituted approximately 40% of the cells in the CNT, ICT, and CCD. Type A, type B, and non A-non B intercalated cells were observed in all of the three segments, with type A cells being the most prevalent in both species. In the mouse, however, non A-non B cells constituted more than half of the intercalated cells in the CNT, 39% in the ICT, and 22% in the CCD, compared with 14, 7, and 5%, respectively, in the rat. In contrast, type B intercalated cells accounted for only 8 to 16% of the intercalated cells in the three segments in the mouse compared with 26 to 39% in the rat. It is concluded that striking differences exist in the prevalence and distribution of the different types of intercalated cells in the CNT, ICT, and CCD of rat and mouse. In the rat, the non A-non B cells are fairly rare, whereas in the mouse, they constitute a major fraction of the intercalated cells, primarily at the expense of the type B intercalated cells.


1994 ◽  
Vol 266 (4) ◽  
pp. F528-F535 ◽  
Author(s):  
C. Emmons ◽  
J. B. Stokes

HCO3- secretion by cortical collecting duct (CCD) occurs via beta-intercalated cells. In vitro CCD HCO3- secretion is modulated by both the in vivo acid-base status of the animal and by adenosine 3',5'-cyclic monophosphate (cAMP). To investigate the mechanism of cAMP-induced HCO3- secretion, we measured intracellular pH (pHi) of individual beta-intercalated cells of CCDs dissected from alkali-loaded rabbits perfused in vitro. beta-Intercalated cells were identified by demonstrating the presence of an apical anion exchanger (cell alkalinization in response to removal of lumen Cl-). After 180 min of perfusion to permit decrease of endogenous cAMP, acute addition of 0.1 mM 8-bromo-cAMP or 1 microM isoproterenol to the bath caused a transient cellular alkalinization (> 0.20 pH units). In the symmetrical absence of either Na+, HCO3-, or Cl-, cAMP produced no change in pHi. Basolateral dihydrogen 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (0.1 mM) for 15 min before cAMP addition also prevented this alkalinization. In contrast to the response of cells from alkali-loaded rabbits, addition of basolateral cAMP to CCDs dissected from normal rabbits resulted in an acidification of beta-intercalated cells (approximately 0.20 pH units). The present studies demonstrate the importance of the in vivo acid-base status of the animal in the regulation of CCD HCO3- secretion by beta-intercalated cells. The results identify the possible existence of a previously unrecognized Na(+)-dependent Cl-/HCO3- exchanger on the basolateral membrane of beta-intercalated cells in alkali-loaded rabbits.


1999 ◽  
Vol 276 (4) ◽  
pp. F606-F613 ◽  
Author(s):  
I. David Weiner ◽  
Amy E. Frank ◽  
Charles S. Wingo ◽  

The inner stripe of outer medullary collecting duct (OMCDis) is unique among collecting duct segments because both intercalated cells and principal cells secrete protons and reabsorb luminal bicarbonate. The current study characterized the mechanisms of OMCDis proton secretion. We used in vitro microperfusion, and we separately studied the principal cell and intercalated cell using differential uptake of the fluorescent, pH-sensitive dye, 2′,7′-bis(2-carboxyethyl)-5(6)-carboxyfluorescein (BCECF). Both the principal cell and intercalated cell secreted protons, as identified as Na+/H+exchange-independent intracellular pH (pHi) recovery from an intracellular acid load. Two proton transport activities were identified in the principal cell; one was luminal potassium dependent and Sch-28080 sensitive and the other was luminal potassium independent and luminal bafilomycin A1sensitive. Thus the OMCDisprincipal cell expresses both apical H+-K+-ATPase and H+-ATPase activity. Intercalated cell Na+/H+exchange-independent pHi recovery was approximately twice that of the principal cell and was mediated by pharmacologically similar mechanisms. We conclude 1) the OMCDis principal cell may contribute to both luminal potassium reabsorption and urinary acidification, roles fundamentally different from those of the principal cell in the cortical collecting duct; and 2) the OMCDis intercalated cell proton transporters are functionally similar to those in the principal cell, raising the possibility that an H+-K+-ATPase similar to the one present in the principal cell may contribute to intercalated cell proton secretion.


Sign in / Sign up

Export Citation Format

Share Document