A simple module for on-line computation of stroke volume and cardiac output

1975 ◽  
Vol 38 (5) ◽  
pp. 927-929 ◽  
Author(s):  
G. Pinardi ◽  
A. Sainz ◽  
E. Santiago

An easily constructed, low-priced, simple, and reliable module to obtain stroke volume and cardiac output by analog integration of aortic blood flow velocity signals is described. Rapid data analysis of physiologic and pharmacologic cardiovascular responses in dogs is greatly facilitated by on line computation of these parameters.

2012 ◽  
Vol 112 (11) ◽  
pp. 1832-1838 ◽  
Author(s):  
Tatsuya Arai ◽  
Kichang Lee ◽  
Robert P. Marini ◽  
Richard J. Cohen

The purpose of this study was to introduce and validate a new algorithm to estimate instantaneous aortic blood flow (ABF) by mathematical analysis of arterial blood pressure (ABP) waveforms. The algorithm is based on an autoregressive with exogenous input (ARX) model. We applied this algorithm to diastolic ABP waveforms to estimate the autoregressive model coefficients by requiring the estimated diastolic flow to be zero. The algorithm incorporating the coefficients was then applied to the entire ABP signal to estimate ABF. The algorithm was applied to six Yorkshire swine data sets over a wide range of physiological conditions for validation. Quantitative measures of waveform shape (standard deviation, skewness, and kurtosis), as well as stroke volume and cardiac output from the estimated ABF, were computed. Values of these measures were compared with those obtained from ABF waveforms recorded using a Transonic aortic flow probe placed around the aortic root. The estimation errors were compared with those obtained using a windkessel model. The ARX model algorithm achieved significantly lower errors in the waveform measures, stroke volume, and cardiac output than those obtained using the windkessel model ( P < 0.05).


2020 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Ignacio Oulego-Erroz ◽  
Sandra Terroba-Seara ◽  
Paula Alonso-Quintela ◽  
Antonio Rodríguez-Núñez

2017 ◽  
Vol 49 (5S) ◽  
pp. 726
Author(s):  
Evan L. Matthews ◽  
Stephanie A. Guarino ◽  
Jennifer M. Masiddo ◽  
Peter A. Hosick

1993 ◽  
Vol 75 (1) ◽  
pp. 114-120 ◽  
Author(s):  
H. L. Collins ◽  
S. E. DiCarlo

The influence of cardiac afferents on the muscle metaboreflex was examined in 16 rats instrumented with a Silastic-tipped catheter in the pericardial space and right atrium, Doppler ultrasonic flow probe and a pneumatic vascular occluder around the terminal aorta, and a Teflon catheter in the thoracic aorta. In protocol I (cardiac efferent and afferent blockade), the muscle metaboreflex was examined under three experimental conditions: 1) control, 2) cardiac autonomic efferent blockade [intrapericardial methylscopolamine (10 micrograms/kg) and propranolol (50 micrograms/kg)], and 3) combined cardiac autonomic efferent and afferent blockade (intrapericardial procainamide, 2%). In protocol II (blood volume expansion), the muscle metaboreflex was examined before and after 15% blood volume expansion. Mild treadmill exercise (9 m/min, 10% grade) increased heart rate (71 +/- 9.4 beats/min), mean arterial pressure (12 +/- 2.0 mmHg), and terminal aortic blood flow velocity (6 +/- 1.0 kHz). During exercise, a reduction of terminal aortic blood flow velocity (10.5 +/- 1.1%) reduced mixed venous PO2 18 +/- 6%. The gain of the muscle metaboreflex in the control condition was 14.6 +/- 2.9 mmHg/kHz. Efferent blockade reduced the gain 51 +/- 7%. However, combined cardiac efferent and afferent blockade increased the gain 207 +/- 64% above the efferent blocked condition and restored the gain to levels above those obtained in the control condition (18.3 +/- 4.6 mmHg/kHz). In addition, 15% blood volume expansion reduced the gain of the muscle metaboreflex regulation of mean arterial pressure and heart rate (44 +/- 9.5% and 41 +/- 12.0%, respectively). Thus cardiac afferents tonically inhibit the pressor response to a reduction in terminal aortic blood flow velocity during exercise.


Sign in / Sign up

Export Citation Format

Share Document