Reduction of chronic hypoxic pulmonary hypertension in the rat by beta-aminopropionitrile

1984 ◽  
Vol 57 (6) ◽  
pp. 1760-1766 ◽  
Author(s):  
J. S. Kerr ◽  
D. J. Riley ◽  
M. M. Frank ◽  
R. L. Trelstad ◽  
H. M. Frankel

We administered antifibrotic agent beta-aminopropionitrile (BAPN) to rats exposed to 10% O2-90% N2 for 3 wk to prevent excess vascular collagen accumulation. Groups of Sprague-Dawley rats studied were air breathing, hypoxic, and hypoxic treated with BAPN, 150 mg/kg twice daily intraperitoneally. After the 3-wk period, we measured mean right ventricular pressure (RVP), the ratio of weight of right ventricle to left ventricle plus septum (RV/LV + S), and hydroxyproline content of the main pulmonary artery (PA) trunk. Hypoxia increased RVP from 14 to 29 mmHg; RVP was 21 mmHg in hypoxic BAPN-treated animals. Hypoxia increased the RV/LV + S ratio from 0.28 to 0.41; the ratio was 0.32 in hypoxic BAPN-treated animals. Hypoxia increased PA hydroxyproline from 20 to 239 micrograms/artery; hydroxyproline was 179 micrograms/artery in hypoxic BAPN-treated animals. Thus BAPN prevented pulmonary hypertension, right ventricular hypertrophy, and excess vascular collagen produced by hypoxia. We conclude that vascular collagen contributes to the maintenance of chronic hypoxic pulmonary hypertension.

2014 ◽  
Vol 40 (4) ◽  
pp. 421-424 ◽  
Author(s):  
Igor Bastos Polonio ◽  
Milena Marques Pagliareli Acencio ◽  
Rogério Pazetti ◽  
Francine Maria de Almeida ◽  
Bárbara Soares da Silva ◽  
...  

We assessed the effects of lodenafil on hemodynamics and inflammation in the rat model of monocrotaline-induced pulmonary hypertension (PH). Thirty male Sprague-Dawley rats were randomly divided into three groups: control; monocrotaline (experimental model); and lodenafil (experimental model followed by lodenafil treatment, p.o., 5 mg/kg daily for 28 days) Mean pulmonary artery pressure (mPAP) was obtained by right heart catheterization. We investigated right ventricular hypertrophy (RVH) and IL-1 levels in lung fragments. The number of cases of RVH was significantly higher in the monocrotaline group than in the lodenafil and control groups, as were mPAP and IL-1 levels. We conclude that lodenafil can prevent monocrotaline-induced PH, RVH, and inflammation.


1996 ◽  
Vol 271 (6) ◽  
pp. H2246-H2253 ◽  
Author(s):  
S. Tjen-A-Looi ◽  
R. Ekman ◽  
J. Osborn ◽  
I. Keith

The role of endothelin (ET)-1 in pulmonary arterial pressure (Ppa) homeostasis and hypoxia-induced pulmonary hypertension was examined. ET-1 was chronically infused (2 and 4 pmol.kg-1.min-1) into the pulmonary circulation of male Sprague-Dawley rats for 3, 7, and 14 days while they were exposed to normoxia or hypobaric hypoxia (inspired O2 fraction 10%). The role of endogenous ET was examined by infusion of ET antiserum (ET-AS; 0.25 and 0.5 microliter.rat-1.h-1; cross-reacting with ET-1, -2, and -3) or the ETA-receptor blocker BQ-123 (10 pmol.kg-1.min-1). ET-1 (4 pmol) increased Ppa at 3 and 7 days in normoxia and hypoxia and was ineffective at 14 days, probably from ETA-receptor downregulation. BQ-123 blunted the hypoxic Ppa rise at all times, confirming a role for ETA receptors. ET-AS (0.5 microliter) was mostly ineffective but exacerbated hypoxic Ppa at 14 days, in contrast to BQ-123, suggesting that a different ET receptor could be involved. ET-1 infusion (2 pmol) caused right ventricular hypertrophy (RVH) in normoxia and exacerbated RVH in hypoxia, whereas BQ-123 and ET-AS (0.25 microliter) reduced hypoxic RVH. In conclusion, endogenous ET-1 plays a role in hypoxia-induced pulmonary hypertension and RVH by augmenting the level of hypoxic response. ET-1 also affects hematocrit and may reduce blood levels of the vasodilator calcitonin gene-related peptide.


1997 ◽  
Vol 87 (Supplement) ◽  
pp. 575A ◽  
Author(s):  
W. Steudel ◽  
M. Scherrer-Crosbie ◽  
J. Weimann ◽  
M.H. Picard ◽  
P.L. Huang ◽  
...  

2011 ◽  
Vol 300 (5) ◽  
pp. L753-L761 ◽  
Author(s):  
Shiro Mizuno ◽  
Herman J. Bogaard ◽  
Donatas Kraskauskas ◽  
Aysar Alhussaini ◽  
Jose Gomez-Arroyo ◽  
...  

Chronic hypoxia induces pulmonary arterial remodeling, resulting in pulmonary hypertension and right ventricular hypertrophy. Hypoxia has been implicated as a physiological stimulus for p53 induction and hypoxia-inducible factor-1α (HIF-1α). However, the subcellular interactions between hypoxic exposure and expression of p53 and HIF-1α remain unclear. To examine the role of p53 and HIF-1α expression on hypoxia-induced pulmonary arterial remodeling, wild-type (WT) and p53 knockout (p53KO) mice were exposed to either normoxia or hypoxia for 8 wk. Following chronic hypoxia, both genotypes demonstrated elevated right ventricular pressures, right ventricular hypertrophy as measured by the ratio of the right ventricle to the left ventricle plus septum weights, and vascular remodeling. However, the right ventricular systolic pressures, the ratio of the right ventricle to the left ventricle plus septum weights, and the medial wall thickness of small vessels were significantly greater in the p53KO mice than in the WT mice. The p53KO mice had lower levels of p21 and miR34a expression, and higher levels of HIF-1α, VEGF, and PDGF expression than WT mice following chronic hypoxic exposure. This was associated with a higher proliferating cell nuclear antigen expression of pulmonary artery in p53KO mice. We conclude that p53 plays a critical role in the mitigation of hypoxia-induced small pulmonary arterial remodeling. By interacting with p21 and HIF-1α, p53 may suppress hypoxic pulmonary arterial remodeling and pulmonary arterial smooth muscle cell proliferation under hypoxia.


1990 ◽  
Vol 68 (4) ◽  
pp. 1542-1547 ◽  
Author(s):  
G. J. Poiani ◽  
C. A. Tozzi ◽  
J. K. Choe ◽  
S. E. Yohn ◽  
D. J. Riley

We have shown that administration of the antifibrotic agent cis-4-hydroxy-L-proline (cHyp) to rats at the onset of exposure to hypoxia prevents collagen accumulation in pulmonary arteries and the rise in pulmonary blood pressure. In this experiment, we tested whether cHyp is effective when administered after hypertension was already established. Rats were exposed to hypoxia (10% O2) for 21 days. Groups were hypoxic animals treated with cHyp (200 mg/kg sc twice daily) on days 10-21 (hypoxic cHyp) and saline-injected hypoxic animals (hypoxic). On day 21, we measured mean right ventricular pressure, hematocrit, collagen content of main and intrapulmonary arteries, and wall thickness of arterioles. Treatment reduced right ventricular pressure from 21 +/- 1 to 17 +/- 1 mmHg (P less than 0.05), hematocrit from 66 +/- 1 to 56 +/- 1% (P less than 0.05), hydroxyproline content of intrapulmonary arteries from 30 +/- 3 to 11 +/- 2 micrograms/vessel (P less than 0.05), and wall thickness from 27 +/- 3 to 16 +/- 2 microns (P less than 0.05). These results show that vascular collagen content is increased in established pulmonary hypertension and that cHyp treatment is effective in partially preventing the hemodynamic, structural, and biochemical changes if started after pulmonary hypertension is established. cHyp may also affect the rheological properties of blood.


1993 ◽  
Vol 74 (6) ◽  
pp. 3020-3026 ◽  
Author(s):  
L. C. Ou ◽  
G. L. Sardella ◽  
N. S. Hill ◽  
C. D. Thron

Chronic hypoxia increases the total blood volume (TBV) and pulmonary arterial blood pressure (Ppa) and induces pulmonary vascular remodeling. The present study was undertaken to assess how the pulmonary blood volume (PBV) changes during hypoxia and the possible role of PBV in chronic hypoxic pulmonary hypertension. A novel method has been developed to measure the TBV, PBV, and Ppa in conscious rats. The method consists of chronic implantation of a loose ligature around the ascending aorta and pulmonary artery, so that when the ligature is drawn tightly, it traps the blood in the pulmonary vessels and left heart and simultaneously kills the rat. The pulmonary veins are then ligated to separate the left ventricular blood volume from the PBV. This surgical approach, together with chronic catheterization of the pulmonary artery and the use of 51Cr-labeled red blood cells, allows measurement of TBV, PBV, and Ppa. This method has been used to analyze the relationships between TBV and PBV and between Ppa or right ventricular hypertrophy and PBV in two rat strains with markedly different TBV and Ppa responses to chronic hypoxia. PBV per given lung weight did not increase and even decreased during hypoxia despite marked increases in TBV. There was a close correlation between Ppa or right ventricular hypertrophy and PBV in the two strains of chronically hypoxic animals, suggesting that a greater PBV plays a significant role in the development of severe chronic hypoxic pulmonary hypertension in the altitude-susceptible Hilltop rats.


2015 ◽  
Vol 308 (9) ◽  
pp. L873-L890 ◽  
Author(s):  
Andrea L. Frump ◽  
Kara N. Goss ◽  
Alexandra Vayl ◽  
Marjorie Albrecht ◽  
Amanda Fisher ◽  
...  

Estrogens are disease modifiers in PAH. Even though female patients exhibit better right ventricular (RV) function than men, estrogen effects on RV function (a major determinant of survival in PAH) are incompletely characterized. We sought to determine whether sex differences exist in RV function in the SuHx model of PAH, whether hormone depletion in females worsens RV function, and whether E2 repletion improves RV adaptation. Furthermore, we studied the contribution of ERs in mediating E2’s RV effects. SuHx-induced pulmonary hypertension (SuHx-PH) was induced in male and female Sprague-Dawley rats as well as OVX females with or without concomitant E2 repletion (75 μg·kg−1·day−1). Female SuHx rats exhibited superior CI than SuHx males. OVX worsened SuHx-induced decreases in CI and SuHx-induced increases in RVH and inflammation (MCP-1 and IL-6). E2 repletion in OVX rats attenuated SuHx-induced increases in RV systolic pressure (RVSP), RVH, and pulmonary artery remodeling and improved CI and exercise capacity (V̇o2max). Furthermore, E2 repletion ameliorated SuHx-induced alterations in RV glutathione activation, proapoptotic signaling, cytoplasmic glycolysis, and proinflammatory cytokine expression. Expression of ERα in RV was decreased in SuHx-OVX but was restored upon E2 repletion. RV ERα expression was inversely correlated with RVSP and RVH and positively correlated with CO and apelin RNA levels. RV-protective E2 effects observed in females were recapitulated in male SuHx rats treated with E2 or with pharmacological ERα or ERβ agonists. Our data suggest significant RV-protective ER-mediated effects of E2 in a model of severe PH.


Sign in / Sign up

Export Citation Format

Share Document