Baroreflex responsiveness is maintained during isometric exercise in humans

1986 ◽  
Vol 61 (2) ◽  
pp. 797-803 ◽  
Author(s):  
T. J. Ebert

The simultaneous rise in heart rate and arterial pressure during isometric handgrip exercise suggests that arterial baroreflex control may be altered. We applied incremental intensities of neck suction and pressure to nine healthy young men to alter carotid sinus transmural pressure. Carotid stimuli were delivered during 1) supine control, 2) “anticipation” of beginning exercise, and 3) handgrip (20% of maximum voluntary contraction). Anticipation was a quiet period, immediately preceding the beginning of handgrip, when no muscular work was being performed. Compared with control, the R-R interval prolongation and mean arterial pressure decline provoked by carotid stimuli were decreased during the anticipation period. These data suggest that influences from higher central neural locations may alter baroreflex function. Furthermore, we derived stimulus-response curves relating carotid sinus transmural pressure to changes in R-R interval and mean arterial pressure. These curves were shifted during handgrip; however, calculated regression slopes were not changed from control. The data indicate that isometric handgrip exercise has a specific influence on human carotid baroreflex control of arterial pressure and heart period: baroreflex function curves are shifted rightward during handgrip, whereas baroreflex sensitivity is unchanged. Furthermore, central neural influences may be partially involved in these alterations.

2010 ◽  
Vol 2010 ◽  
pp. 1-11 ◽  
Author(s):  
Styliani Goulopoulou ◽  
Bo Fernhall ◽  
Jill A. Kanaley

The purpose of this study was to examine differences in pressor response and cardiovagal modulation during isometric handgrip exercise (IHG) between children and adults. Beat-to-beat heart rate (HR) and blood pressure were measured in 23 prepubertal children and 23 adults at baseline and during IHG. Cardiovagal modulation was quantified by analysis of HR variability. Mean arterial pressure responses to IHG were greater in adults compared to children (P<.05) whereas there were no group differences in HR responses (P>.05). Children had a greater reduction in cardiovagal modulation in response to IHG compared to adults (P<.05). Changes in mean arterial pressure during IHG were correlated with baseline cardiovagal modulation and force produced during isometric contraction (P<.05). In conclusion, differences in pressor reflex response between children and adults cannot be solely explained by differences in autonomic modulation and appear to be associated with factors contributing to the force produced during isometric contraction.


2020 ◽  
pp. 1-6
Author(s):  
S. Ezhilnila ◽  
S. Brinda ◽  
A. Meena ◽  
P.J. Samuel

Glaucoma is the main cause for irreversible blindness in India. The main determinant of glaucoma is raised intraocular pressure (IOP) which is influenced by many factors. One of the main factors is physical exercise. Objective of this study is to exhibit the effect of isometric handgrip exercise using Smedley’s handgrip dynamometer on IOP among young adult males in the south Indian population. In this quasi experimental study, 150 young healthy adult male subjects with ages between 15 to 40 years were selected on the basis of fulfilling our inclusion and exclusion criteria with the help of a questionnaire. Baseline IOP and maximum voluntary contraction (MVC) of the subjects were measured using non-contact tonometer and Smedley’s Handgrip Dynamometer, respectively. The subjects were instructed to hold the handgrip dynamometer with 20% of MVC in sustained manner for minimum 2 min or until fatigue sets in. IOP were measured on both eyes immediately and 15 min following exercise and IOP variation was analysed using paired t-test. A small but significant decrease in IOP was noted immediately as well as 15 min following exercise. Average fall in right eye was 1.75 mm Hg immediately and 2.14 mm Hg 15 min following exercise (P<0.01). The average fall in the left eye was 1.62 mm Hg immediately and 1.91 mm Hg after 15 min (P<0.01). Isometric handgrip exercise of the single upper limb showed significant reduction of IOP on both eyes following exercise and the decrease was much higher 15 min after exercise. This result can be extrapolated and clinically applied for glaucoma prevention and supplemented as lifestyle modification during glaucoma treatment.


2014 ◽  
Vol 306 (2) ◽  
pp. H251-H260 ◽  
Author(s):  
Kazuhito Watanabe ◽  
Masashi Ichinose ◽  
Rei Tahara ◽  
Takeshi Nishiyasu

We tested the hypotheses that, in humans, changes in cardiac output (CO) and total peripheral vascular resistance (TPR) occurring in response to isometric handgrip exercise vary considerably among individuals and that those individual differences are related to differences in muscle metaboreflex and arterial baroreflex function. Thirty-nine healthy subjects performed a 1-min isometric handgrip exercise at 50% of maximal voluntary contraction. This was followed by a 4-min postexercise muscle ischemia (PEMI) period to selectively maintain activation of the muscle metaboreflex. All subjects showed increases in arterial pressure during exercise. Interindividual coefficients of variation (CVs) for the changes in CO and TPR between rest and exercise periods (CO: 95.1% and TPR: 87.8%) were more than twofold greater than CVs for changes in mean arterial pressure (39.7%). There was a negative correlation between CO and TPR responses during exercise ( r = −0.751, P < 0.01), but these CO and TPR responses correlated positively with the corresponding responses during PEMI ( r = 0.568 and 0.512, respectively, P < 0.01). The CO response during exercise did not correlate with PEMI-induced changes in an index of cardiac parasympathetic tone and cardiac baroreflex sensitivity. These findings demonstrate that the changes in CO and TPR that occur in response to isometric handgrip exercise vary considerably among individuals and that the two responses have an inverse relationship. They also suggest that individual differences in components of the pressor response are attributable in part to variations in muscle metaboreflex-mediated cardioaccelerator and vasoconstrictor responses.


1989 ◽  
Vol 66 (4) ◽  
pp. 1586-1592 ◽  
Author(s):  
W. F. Taylor ◽  
J. M. Johnson ◽  
W. A. Kosiba ◽  
C. M. Kwan

Cutaneous vascular responses to dynamic exercise have been well characterized, but it is not known whether that response pattern applies to isometric handgrip exercise. We examined cutaneous vascular responses to isometric handgrip and dynamic leg exercise in five supine men. Skin blood flow was measured by laser-Doppler velocimetry and expressed as laser-Doppler flow (LDF). Arterial blood pressure was measured noninvasively once each minute. Cutaneous vascular conductance (CVC) was calculated as LDF/mean arterial pressure. LDF and CVC responses were measured at the forearm and chest during two 3-min periods of isometric handgrip at 30% of maximum voluntary contraction and expressed as percent changes from the preexercise levels. The skin was normothermic (32 degrees C) for the first period of handgrip and was locally warmed to 39 degrees C for the second handgrip. Finally, responses were observed during 5 min of dynamic two-leg bicycle exercise (150–175 W) at a local skin temperature of 39 degrees C. Arm LDF increased 24.5 +/- 18.9% during isometric handgrip in normothermia and 64.8 +/- 14.1% during isometric handgrip at 39 degrees C (P less than 0.05). Arm CVC did not significantly change at 32 degrees C but significantly increased 18.1 +/- 6.5% during isometric handgrip at 39 degrees C (P less than 0.05). Arm LDF decreased 12.2 +/- 7.9% during dynamic exercise at 39 degrees C, whereas arm CVC fell by 35.3 +/- 4.6% (in each case P less than 0.05). Chest LDF and CVC showed similar responses.(ABSTRACT TRUNCATED AT 250 WORDS)


2008 ◽  
Vol 294 (5) ◽  
pp. H2296-H2304 ◽  
Author(s):  
James P. Fisher ◽  
Colin N. Young ◽  
Paul J. Fadel

Whether the activation of metabolically sensitive skeletal muscle afferents (i.e., muscle metaboreflex) influences cardiac baroreflex responsiveness remains incompletely understood. A potential explanation for contrasting findings of previous reports may be related to differences in the magnitude of muscle metaboreflex activation utilized. Therefore, the present study was designed to investigate the influence of graded intensities of muscle metaboreflex activation on cardiac baroreflex function. In eight healthy subjects (24 ± 1 yr), the graded isolation of the muscle metaboreflex was achieved by post-exercise ischemia (PEI) following moderate- (PEI-M) and high- (PEI-H) intensity isometric handgrip performed at 35% and 45% maximum voluntary contraction, respectively. Beat-to-beat heart rate (HR) and blood pressure were measured continuously. Rapid pulse trains of neck pressure and neck suction (+40 to −80 Torr) were applied to derive carotid baroreflex stimulus-response curves. Mean blood pressure increased significantly from rest during PEI-M (+13 ± 3 mmHg) and was further augmented during PEI-H (+26 ± 4 mmHg), indicating graded metaboreflex activation. However, the operating point gain and maximal gain (−0.51 ± 0.09, −0.48 ± 0.13, and −0.49 ± 0.12 beats·min−1·mmHg−1 for rest; PEI-M and PEI-H) of the carotid-cardiac baroreflex function curve were unchanged from rest during PEI-M and PEI-H ( P > 0.05 vs. rest). Furthermore, the carotid-cardiac baroreflex function curve was progressively reset rightward from rest to PEI-M to PEI-H, with no upward resetting. These findings suggest that the muscle metaboreflex contributes to the resetting of the carotid baroreflex control of HR; however, it would appear not to influence carotid-cardiac baroreflex responsiveness in humans, even with high-intensity activation during PEI.


1993 ◽  
Vol 74 (3) ◽  
pp. 1274-1279 ◽  
Author(s):  
M. J. Brunner ◽  
M. D. Kligman

The purpose of this study was to determine whether baroreflex control of respiratory responses is diminished in hypertension. Ten dogs were made chronically hypertensive with use of a bilateral renal wrap technique. Eight sham-operated dogs served as normotensive controls. After the development of experimental hypertension, carotid baroreflex control of arterial pressure, heart rate, respiratory frequency, tidal volume, and ventilation was acutely assessed. Under pentobarbital anesthesia and with bilateral vagotomy, the carotid sinuses were isolated and perfused at controlled pressures. Before the carotid sinus region was manipulated, the mean arterial pressure was significantly higher (P < 0.005) in the hypertensive group (146.4 +/- 2.3 mmHg) than in the normotensive group (124.7 +/- 2.6 mmHg). The mean arterial pressures and heart rates measured at every level of carotid sinus pressure were significantly higher in the hypertensive group. Reflex gain of heart rate, but not mean arterial pressure, was significantly reduced in the hypertensive group. Respiratory frequency, tidal volume, and ventilatory responses to changes in carotid sinus pressure were significant and resulted in an approximately 40% reflex change in ventilation. These responses were not diminished in the hypertensive group. We conclude that respiratory baroreflex responses are preserved in experimental hypertension.


1994 ◽  
Vol 267 (1) ◽  
pp. H344-H353 ◽  
Author(s):  
A. V. Ng ◽  
R. Callister ◽  
D. G. Johnson ◽  
D. R. Seals

Sympathetic nervous system reactivity to stress is though to increase with age in humans. We tested this hypothesis by recording postganglionic sympathetic nerve activity to skeletal muscle (MSNA) (peroneal microneurography) and by measuring plasma norepinephrine concentrations (PNE), heart rate, and arterial pressure before (prestress control) and during cognitive challenge (mental arithmetic and colored word test), thermal stress (i.e., the cold pressor test), and exhaustive isometric handgrip exercise (40% of maximum voluntary force)/postexercise ischemia in 15 older (60-74 yr, mean +/- SE = 64 +/- 1) and 15 young (19–30 yr, mean +/- SE = 25 +/- 1) healthy men and women (8 males, 7 females each). The initial prestress control level of MSNA was higher in the older subjects (P < 0.01 vs. young), but there were no significant differences for PNE, heart rate, or arterial pressure. The MSNA and PNE responses to mental stress were small and not different in the two groups. MSNA and PNE increased markedly in response to the cold pressor test and isometric handgrip exercise/post exercise ischemia in both groups. The absolute unit increases in MSNA were similar in the two groups, but the relative (percentage) increases were actually smaller in the older subjects (P < 0.05 vs. young) due to their elevated baseline levels. The stress-evoked increases in arterial pressure were similar in the groups, but the older subjects tended to demonstrate smaller increases in heart rate. In general, no gender differences were noted in either age group. These findings fail to support the long-held concept that stress-induced sympathetic nervous system stimulation becomes exaggerated with age. Thus, sympathetic neural hyperreactivity does not appear to be a fundamental property of the aging process in humans.


1985 ◽  
Vol 249 (3) ◽  
pp. H655-H662 ◽  
Author(s):  
R. H. Cox ◽  
R. J. Bagshaw ◽  
D. K. Detweiler

The open-loop carotid sinus baroreflex control of arterial pressure-flow relations were compared in mongrel dogs and racing greyhounds (GH) anesthetized with alpha-chloralose. The carotid sinuses were bilaterally isolated and perfused under controlled pressure. Pulsatile pressure and flow were simultaneously measured in the ascending aorta, the celiac, superior mesenteric, left renal, and right iliac arteries. Open-loop set point values of mean arterial pressure were higher in GH before and after vagotomy. Reflex gains were similar before vagotomy but lower in GH after vagotomy. The overall range of control of arterial pressure was the same before vagotomy but smaller in GH after vagotomy. The variation of mean arterial pressure with mean carotid sinus pressure in GH was shifted toward higher pressure levels similar to resetting. The overall effects of vagotomy on carotid sinus baroreceptor reflex responses were smaller in GH. Operating point values of regional resistance were generally smaller in GH. Operating point sensitivities of regional resistance were the same except for the iliac bed, which was more sensitive in GH. These results document significant regional differences in the baroreceptor control of regional hemodynamics between mongrels and greyhounds that could contribute to altered responses especially to "hypertensive" perturbations.


Author(s):  
Maura M. Rutherford ◽  
Ashley P. Akerman ◽  
Robert D. Meade ◽  
Sean R. Notley ◽  
Madison D. Schmidt ◽  
...  

Metaboreflex activation augments sweating during mild-to-moderate hyperthermia in euhydrated (isosmotic isovolemic) individuals. Recent work indicates that extracellular hyperosmolality may augment metaboreflex-mediated elevations in sympathetic nervous activity. Our primary objective was therefore to test the hypothesis that extracellular hyperosmolality would exacerbate metaboreflex-mediated increases in sweat rate. On two separate occasions, 12 young men (mean (SD): 25 (5) years) received a 90-min intravenous infusion of either 0.9% saline (isosmotic condition, ISO) or 3.0% saline (hyperosmotic condition, HYP), resulting in a post-infusion serum osmolality of 290 (3) and 301 (7) mOsm/kg, respectively. A whole-body water perfusion suit was then used to increase esophageal temperature by 0.8°C above resting. Participants then performed a metaboreflex activation protocol consisting of 90 s isometric handgrip exercise (40% of their pre-determined maximum voluntary contraction), followed by 150 s of brachial occlusion (trapping produced metabolites within the limb). Metaboreflex-induced sweating was quantified as the change in global sweat rate (from pre-isometric handgrip exercise to brachial occlusion), estimated as the surface area-weighted average of local sweat rate on the abdomen, axilla, chest, bicep, quadriceps, and calf, measured using ventilated capsules (3.8 cm2). We also explored whether this response differed between body regions. The change in global sweat rate due to metaboreflex activation was significantly greater in HYP compared to ISO (0.03 mg/min/cm2 [95% confidence interval: 0.00, 0.06]; p=0.047), but was not modulated by body region (site*condition interaction: p=0.679). These findings indicate that extracellular hyperosmolality augments metaboreflex-induced increases in global sweat rate, with no evidence for region-specific differences.


1978 ◽  
Vol 55 (2) ◽  
pp. 189-194 ◽  
Author(s):  
J. Ludbrook ◽  
I. B. Faris ◽  
J. Iannos ◽  
G. G. Jamieson ◽  
W. J. Russell

1. The change in arterial pressure and heart rate resulting from alteration of carotid sinus transmural pressure by a median −34 mmHg and +33 mmHg by means of a variable-pressure neck chamber was tested in seven male volunteer subjects, at rest and during exertion of 35, 45 and 65% of maximum voluntary handgrip. 2. During 60 s of 35 and 45%, and during 30 s of 65%, of maximal voluntary handgrip there was virtually no alteration of the response of blood pressure to alteration in carotid sinus transmural pressure. 3. The bradycardic response to increase in carotid sinus transmural pressure was reduced at various times after the commencement of handgrip at 45 and 65% of maximum voluntary contraction. 4. It is concluded that a reduction in arterial baroreceptor reflex sensitivity does not play an important role in the initiation of the increase in arterial blood pressure and heart rate caused by isometric exercise. 5. The hypothesis is advanced that some of the cardiovascular changes in exercise may result from elevation of the central ‘set point’ for blood pressure.


Sign in / Sign up

Export Citation Format

Share Document