Effect of thoracic duct drainage on hydrostatic pulmonary edema and pleural effusion in sheep

1991 ◽  
Vol 71 (1) ◽  
pp. 314-316 ◽  
Author(s):  
S. J. Allen ◽  
R. E. Drake ◽  
G. A. Laine ◽  
J. C. Gabel

Positive end-expiratory pressure (PEEP) increases central venous pressure, which in turn impedes return of systemic and pulmonary lymph, thereby favoring formation of pulmonary edema with increased microvascular pressure. In these experiments we examined the effect of thoracic duct drainage on pulmonary edema and hydrothorax associated with PEEP and increased left atrial pressure in unanesthetized sheep. The sheep were connected via a tracheostomy to a ventilator that supplied 20 Torr PEEP. By inflation of a previously inserted intracardiac balloon, left atrial pressure was increased to 35 mmHg for 3 h. Pulmonary arterial, systemic arterial, and central venous pressure as well as thoracic duct lymph flow rate were continuously monitored, and the findings were compared with those in sheep without thoracic duct cannulation (controls). At the end of the experiment we determined the severity of pulmonary edema and the volume of pleural effusion. With PEEP and left atrial balloon insufflation, central venous and pulmonary arterial pressure were increased approximately threefold (P less than 0.05). In sheep with a thoracic duct fistula, pulmonary edema was less (extra-vascular fluid-to-blood-free dry weight ratio 4.8 +/- 1.0 vs. 6.1 +/- 1.0; P less than 0.05), and the volume of pleural effusion was reduced (2.0 +/- 2.9 vs. 11.3 +/- 9.6 ml; P less than 0.05). Our data signify that, in the presence of increased pulmonary microvascular pressure and PEEP, thoracic duct drainage reduces pulmonary edema and hydrothorax.

1987 ◽  
Vol 62 (3) ◽  
pp. 1006-1009 ◽  
Author(s):  
S. J. Allen ◽  
R. E. Drake ◽  
J. Katz ◽  
J. C. Gabel ◽  
G. A. Laine

In many sheep Escherichia coli endotoxin results in pulmonary hypertension, increased microvascular permeability, pulmonary edema, and increased central venous pressure. Since lung lymph drains into the systemic veins, increases in venous pressure may impair lymph flow sufficiently to enhance the accumulation of extravascular fluid. We tested the hypothesis that, following endotoxin, elevating the venous pressure would increase extravascular fluid. Thirteen sheep were chronically instrumented with catheters to monitor left atrial pressure (LAP), pulmonary arterial pressure (PAP), and superior vena caval pressure (SVCP) as well as balloons to elevate LAP and SVCP. These sheep received 4 micrograms/kg endotoxin, and following the pulmonary hypertensive spike the left atrial balloon was inflated so that (PAP + LAP)/2 = colloid osmotic pressure. It was necessary to control PAP + LAP in this way to minimize the sheep-to-sheep differences in the pulmonary hypertension. We elevated the SVCP to 10 or 17 mmHg or allowed it to stay low (3.2 mmHg). After a 3-h period, we killed the sheep and removed the right lungs for determination of the extravascular fluid-to-blood-free dry weight ratio (EVF). Sheep with SVCP elevated to 10 or 17 mmHg had significant increases in EVF (5.2 +/- 0.1 and 5.6 +/- 1.2) compared with the sheep in which we did not elevate SVCP (EVF = 4.5 +/- 0.4). These results indicate that sustained elevation in central venous pressure in patients contributes to the amount of pulmonary edema associated with endotoxemia.


1985 ◽  
Vol 63 (Supplement) ◽  
pp. A126 ◽  
Author(s):  
S. J. Allen ◽  
R. E. Drake ◽  
J. C. Gabel ◽  
G. A. Laine

2000 ◽  
Vol 89 (4) ◽  
pp. 1255-1265 ◽  
Author(s):  
James A. Frank ◽  
Yibing Wang ◽  
Oscar Osorio ◽  
Michael A. Matthay

To determine whether β-adrenergic agonist therapy increases alveolar liquid clearance during the resolution phase of hydrostatic pulmonary edema, we studied alveolar and lung liquid clearance in two animal models of hydrostatic pulmonary edema. Hydrostatic pulmonary edema was induced in sheep by acutely elevating left atrial pressure to 25 cmH2O and instilling 6 ml/kg body wt isotonic 5% albumin (prepared from bovine albumin) in normal saline into the distal air spaces of each lung. After 1 h, sheep were treated with a nebulized β-agonist (salmeterol) or nebulized saline (controls), and left atrial pressure was then returned to normal. β-Agonist therapy resulted in a 60% increase in alveolar liquid clearance over 3 h ( P< 0.001). Because the rate of alveolar fluid clearance in rats is closer to human rates, we studied β-agonist therapy in rats, with hydrostatic pulmonary edema induced by volume overload (40% body wt infusion of Ringer lactate). β-Agonist therapy resulted in a significant decrease in excess lung water ( P < 0.01) and significant improvement in arterial blood gases by 2 h ( P < 0.03). These preclinical experimental studies support the need for controlled clinical trials to determine whether β-adrenergic agonist therapy would be of value in accelerating the resolution of hydrostatic pulmonary edema in patients.


1991 ◽  
Vol 70 (5) ◽  
pp. 1991-1995 ◽  
Author(s):  
S. A. Gu ◽  
J. Ducas ◽  
U. Schick ◽  
R. M. Prewitt

We investigated the effects of hypoxic ventilation on the pulmonary arterial pressure- (P) flow (Q) relationship in an intact canine preparation. Mean pulmonary P-Q coordinates were obtained during hypoxic ventilation and during ventilation with 100% O2 at normal and at increased left atrial pressure. Specifically, we tested the hypothesis that, over a wide range, changes in left atrial pressure would alter the effects of hypoxic ventilation on pulmonary P-Q characteristics. Seven dogs were studied. When left atrial pressure was normal (5 mmHg), the mean value of the extrapolated intercept (PI) of the linear P-Q relationship was 10.9 mmHg and the slope (incremental vascular resistance, IR) of the P-Q relationship was 2.2 mmHg.l-1.min. Hypoxic ventilation increased PI to 18 mmHg (P less than 0.01) but did not affect IR. Subsequently, during ventilation with 100% O2, when left atrial pressure was increased to 14 mmHg by inflation of left atrial balloon, PI increased to 18 mmHg. IR was 1.6 mmHg.l-1.min. Again, hypoxic ventilation caused an isolated change in PI. Hypoxia increased PI from 18 to 28 mmHg (P less than 0.01). As in the condition of normal left atrial pressure, hypoxic ventilation did not affect IR. We conclude that, in an anesthetized intact canine preparation, hypoxic ventilation causes an isolated increase in the extrapolated pressure intercept of the pulmonary P-Q relationship. Furthermore the effects of hypoxic ventilation on pulmonary P-Q characteristics are not affected by the resting left atrial pressure.


1998 ◽  
Vol 45 (8) ◽  
pp. 798-801 ◽  
Author(s):  
Abdulaziz Alzeer ◽  
Subhash Arora ◽  
Ziauddin Ansari ◽  
Desouky F. Fayed ◽  
Mohamed Naguib

Sign in / Sign up

Export Citation Format

Share Document