pulmonary capillary wedge pressure
Recently Published Documents


TOTAL DOCUMENTS

270
(FIVE YEARS 26)

H-INDEX

29
(FIVE YEARS 1)

Author(s):  
Dustin Hillerson ◽  
Richard Charnigo ◽  
Sun Moon Kim ◽  
Amrita Iyengar ◽  
Matthew Lane ◽  
...  

Background: Hemodynamic values from right heart catheterization aid diagnosis and clinical decision-making but may not predict outcomes. Mixed venous oxygen saturation percentage and pulmonary capillary wedge pressure relate to cardiac output and congestion, respectively. We theorized that a novel, simple ratio of these measurements could estimate cardiovascular prognosis. Methods: We queried Veterans Affairs’ databases for clinical, hemodynamic, and outcome data. Using the index right heart catheterization between 2010 and 2016, we calculated the ratio of mixed venous oxygen saturation-to-pulmonary capillary wedge pressure, termed ratio of saturation-to-wedge (RSW). The primary outcome was time to all-cause mortality; secondary outcome was 1-year urgent heart failure presentation. Patients were stratified into quartiles of RSW, Fick cardiac index (CI), thermodilution CI, and pulmonary capillary wedge pressure alone. Kaplan-Meier curves and Cox proportional hazards models related comparators with outcomes. Results: Of 12 019 patients meeting inclusion criteria, 9826 had values to calculate RSW (median 4.00, interquartile range, 2.67–6.05). Kaplan-Meier curves showed early, sustained separation by RSW strata. Cox modeling estimated that increasing RSW by 50% decreases mortality hazard by 19% (estimated hazard ratio, 0.81 [95% CI, 0.79–0.83], P <0.001) and secondary outcome hazard by 28% (hazard ratio, 0.72 [95% CI, 0.70–0.74], P <0.001). Among the 3793 patients with data for all comparators, Cox models showed RSW best associated with outcomes (by both C statistics and Bayes factors). Furthermore, pulmonary capillary wedge pressure was superior to thermodilution CI and Fick CI. Multivariable adjustment attenuated without eliminating the association of RSW with outcomes. Conclusions: In a large national database, RSW was superior to conventional right heart catheterization indices at assessing risk of mortality and urgent heart failure presentation. This simple calculation with routine data may contribute to clinical decision-making in this population.


CHEST Journal ◽  
2021 ◽  
Vol 160 (4) ◽  
pp. A2275-A2278
Author(s):  
Franck Rahaghi ◽  
Richard Channick ◽  
Nick Kim ◽  
Vallerie McLaughlin ◽  
Eliana Martinez ◽  
...  

2021 ◽  
Vol 15 (4) ◽  
pp. 273-283
Author(s):  
Elif HO Cetin ◽  
Mehmet S Cetin ◽  
Hasan C Könte ◽  
Kadir Ocak ◽  
Nezaket M Yaman ◽  
...  

Background: We aimed to assess the association of triiodothyronine (T3) hormone with invasive hemodynamic parameters and all-cause mortality in heart failure with reduced ejection fraction (HFrEF). Results: About 483 HFrEF patients were enrolled. Patients with the lowest T3 tertile had advanced New York Heart Association (NYHA) classes, had higher uric acid, brain natriuretic peptide. T3 level had a positive correlation with cardiac index (CI) and a negative correlation with pulmonary vascular resistance and pulmonary capillary wedge pressure. Adjusted with NYHA III–IV classes, uric acid, aspartate aminotransferase and CI, T3 level was found to be an independent predictor of all-cause mortality. In Kaplan–Meier analysis, the lowest T3 tertile had the lowest survival function. Conclusion: Free T3 is positively correlated with CI and negatively correlated with pulmonary vascular resistance and pulmonary capillary wedge pressure in patients with HFrEF. Lower levels of T3 seems to be a poor prognostic factor in this particular patient population.


2021 ◽  
Author(s):  
Eric S. Wise ◽  
Kyle M. Hocking ◽  
Monica E. Polcz ◽  
Gregory J. Beilman ◽  
Colleen M. Brophy ◽  
...  

Background Measuring fluid status during intraoperative hemorrhage is challenging, but detection and quantification of fluid overload is far more difficult. Using a porcine model of hemorrhage and over-resuscitation, it is hypothesized that centrally obtained hemodynamic parameters will predict volume status more accurately than peripherally obtained vital signs. Methods Eight anesthetized female pigs were hemorrhaged at 30 ml/min to a blood loss of 400 ml. After each 100 ml of hemorrhage, vital signs (heart rate, systolic blood pressure, mean arterial pressure, diastolic blood pressure, pulse pressure, pulse pressure variation) and centrally obtained hemodynamic parameters (mean pulmonary artery pressure, pulmonary capillary wedge pressure, central venous pressure, cardiac output) were obtained. Blood volume was restored, and the pigs were over-resuscitated with 2,500 ml of crystalloid, collecting parameters after each 500-ml bolus. Hemorrhage and resuscitation phases were analyzed separately to determine differences among parameters over the range of volume. Conformity of parameters during hemorrhage or over-resuscitation was assessed. Results During the course of hemorrhage, changes from baseline euvolemia were observed in vital signs (systolic blood pressure, diastolic blood pressure, and mean arterial pressure) after 100 ml of blood loss. Central hemodynamic parameters (mean pulmonary artery pressure and pulmonary capillary wedge pressure) were changed after 200 ml of blood loss, and central venous pressure after 300 ml of blood loss. During the course of resuscitative volume overload, changes were observed from baseline euvolemia in mean pulmonary artery pressure and central venous pressure after 500-ml resuscitation, in pulmonary capillary wedge pressure after 1,000-ml resuscitation, and cardiac output after 2,500-ml resuscitation. In contrast to hemorrhage, vital sign parameters did not change during over-resuscitation. The strongest linear correlation was observed with pulmonary capillary wedge pressure in both hemorrhage (r2 = 0.99) and volume overload (r2 = 0.98). Conclusions Pulmonary capillary wedge pressure is the most accurate parameter to track both hemorrhage and over-resuscitation, demonstrating the unmet clinical need for a less invasive pulmonary capillary wedge pressure equivalent. Editor’s Perspective What We Already Know about This Topic What This Article Tells Us That Is New


Author(s):  
Per Lindqvist ◽  
Michael Henein

AbstractThis study aimed to assess the relationship between different LA strain components and PCWP as well as to the relationship with other established methods. We studied 144 symptomatic patients, age 63 ± 14 years, 54 males, using conventional transthoracic echocardiography protocols, including LA and LV myocardial deformation from speckle tracking technique investigations along with simultaneous right heart catheterization (RHC) using established techniques. From RHC, pulmonary artery pressure (PAP), and pulmonary capillary wedge pressure (PCWP) were measured and pulmonary vascular resistance (PVR) calculated. LA strain rate during atrial contraction (LASRa) was the strongest correlate with PCWP (r2 =  − 0.40, p < 0.001), over and above both LASR during LV systole (LASRs) and LA longitudinal strain during ventricular systole (LASs) (r2 = 0.21 and 0.19, respectively, p < 0.001 for both). The correlation between LASRa and PCWP was stronger in patients with post-capillary PH compared to pre-capillary PH (r2 = 0.21 vs. r2 = 0.02, respectively). The strongest relationship between LASRa and PCWP was in patients with enlarged LA volume > 34 ml/m2 (r2 = 0.60, p < 0.001). In all patients LASRa <  = 0.9 1/s was 88% accurate in predicting LA pressure > 15 mmHg which was superior to recently proposed uni- and multi-variable models. LASR during atrial contraction is the strongest predictor of PCWP, particularly in patients with post-capillary PH and with dilated LA cavity. Furthermore, it proved superior to recently proposed uni- and multi-variable based algorithms. Its close relationship with LV strain rate counterpart reflects important left heart chamber interaction in patients with raised LA pressure.


Sign in / Sign up

Export Citation Format

Share Document