Nitric oxide inhibition varies with hemoglobin saturation

1993 ◽  
Vol 75 (5) ◽  
pp. 2332-2336 ◽  
Author(s):  
J. Iwamoto ◽  
F. C. Morin

Endothelium-derived nitric oxide (NO) appears to be involved in the regulation of pulmonary vascular tone by O2. We hypothesized that the ability of blood to inhibit the vasodilation caused by NO would vary inversely with the saturation of hemoglobin by O2. To test this hypothesis, we used the pulmonary circulation of the unanesthetized fetal lamb as a bioassay for NO-induced vasodilation. Two to 3 days before the experiment, the main pulmonary artery, left atrium, carotid artery, and trachea of the fetus were catheterized and an ultrasonic blood flow transducer was placed around the proximal portion of the left pulmonary artery. On the day of the experiment, NO solution was prepared by bubbling 10% NO-90% N2 gas mixture in saline. This solution was injected into the fluid-filled potential air spaces of the fetal lungs via the trachea. At the highest dose (0.8 mumol), NO increased pulmonary blood flow fourfold and decreased pulmonary vascular resistance similarly. The dose-response curve for NO was similar to those obtained from isolated pulmonary blood vessels and gas-ventilated animals. Mixing NO solution with maternal arterial blood before injection decreased the effect of NO, and mixing it with venous blood virtually eliminated the effect. The decrease in fetal pulmonary vascular resistance caused by NO was inhibited by blood in inverse proportion to the saturation of hemoglobin with O2 in the blood (R2 = 0.93, P < or = 0.0001), confirming our hypothesis.

2009 ◽  
Vol 297 (2) ◽  
pp. L318-L325 ◽  
Author(s):  
Marc Chester ◽  
Pierre Tourneux ◽  
Greg Seedorf ◽  
Theresa R. Grover ◽  
Jason Gien ◽  
...  

Impaired nitric oxide-cGMP signaling contributes to severe pulmonary hypertension after birth, which may in part be due to decreased soluble guanylate cyclase (sGC) activity. Cinaciguat (BAY 58-2667) is a novel sGC activator that causes vasodilation, even in the presence of oxidized heme or heme-free sGC, but its hemodynamic effects have not been studied in the perinatal lung. We performed surgery on eight fetal (126 ± 2 days gestation) lambs (full term = 147 days) and placed catheters in the main pulmonary artery, aorta, and left atrium to measure pressures. An ultrasonic flow transducer was placed on the left pulmonary artery to measure blood flow, and a catheter was placed in the left pulmonary artery for drug infusion. Cinaciguat (0.1–100 μg over 10 min) caused dose-related increases in pulmonary blood flow greater than fourfold above baseline and reduced pulmonary vascular resistance by 80%. Treatment with 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), an sGC-oxidizing inhibitor, enhanced cinaciguat-induced pulmonary vasodilation by >120%. The pulmonary vasodilator effect of cinaciguat was prolonged, decreasing pulmonary vascular resistance for >1.5 h after brief infusion. In vitro stimulation of ovine fetal pulmonary artery smooth muscle cells with cinaciguat after ODQ treatment resulted in a 14-fold increase in cGMP compared with non-ODQ-treated cells. We conclude that cinaciguat causes potent and sustained fetal pulmonary vasodilation that is augmented in the presence of oxidized sGC and speculate that cinaciguat may have therapeutic potential for severe neonatal pulmonary hypertension.


1987 ◽  
Vol 253 (4) ◽  
pp. H941-H948 ◽  
Author(s):  
S. H. Abman ◽  
F. J. Accurso ◽  
R. B. Wilkening ◽  
G. Meschia

To determine the effects of duration of hypoxia on fetal pulmonary blood flow and vasoreactivity, we studied the response of the fetal pulmonary vascular bed before, during, and after prolonged (2-h) and more brief (30-min) exposures to acute hypoxia in 19 chronically instrumented unanesthetized fetal lambs. Left pulmonary arterial blood flow was measured by an electromagnetic flow transducer. Fetal PO2 was lowered by delivering 10-12% O2 to the ewe. During 2-h periods of hypoxia left pulmonary arterial blood flow decreased, and main pulmonary arterial and pulmonary vascular resistance increased. The increase in pulmonary vascular resistance was sustained throughout the 2-h period of hypoxia. After the return of the ewe to room air breathing, pulmonary vascular resistance remained elevated for at least 1 h despite the rapid correction of hypoxemia and in the absence of acidemia. In contrast, after 30 min of hypoxia, left pulmonary arterial blood flow, pulmonary arterial pressure, and pulmonary vascular resistance returned to base-line values rapidly with the termination of hypoxia. The persistent pulmonary hypoperfusion after 2 h of hypoxia was attenuated by alpha-adrenergic blockade and was characterized by a blunted vasodilatory response to increases in fetal PO2. When fetal PO2 was elevated during the posthypoxia period in the presence of alpha-blockade, pulmonary blood flow still remained unresponsive to increases in fetal PO2. We conclude that 2-h periods of acute hypoxia can decrease fetal pulmonary vasoreactivity, and we speculate that related mechanisms may contribute to the failure of the normal adaptation of the pulmonary circulation at birth.


1989 ◽  
Vol 67 (6) ◽  
pp. 587-593
Author(s):  
J. Y. Coe ◽  
P. M. Olley ◽  
F. Coceani

Sequential studies of the pulmonary vascular response to leukotriene D4 (LTD4) and prostaglandin D2 (PGD2) in the immediate newborn period were performed in lambs, instrumented in utero and delivered vaginally. Compounds were tested in fully conscious 1.5-day-old lambs and the study was repeated 1 week later. Bolus injections of PGD2 (0.05–2.0 μg/kg) or LTD4 (0.01–1.0 μg/kg) were made into the main pulmonary artery or aorta while pulmonary blood flow and aortic, pulmonary artery, and left and right atrial pressures were monitored continuously. PGD2 was a systemic constrictor regardless of age. In lambs 1.5 days of age, it decreased pulmonary vascular pressure and resistance by 6% (p < 0.05) and 15% (p < 0.05), respectively, while 1 week later it increased pulmonary vascular resistance by 18% (p < 0.05). In contrast, LTD4 was a pulmonary and systemic vasoconstrictor in both the early and late newborn, the threshold dose being between 0.01 and 0.05 μg/kg at either age. The decrease in pulmonary blood flow and the increase in pressure and resistance were greater in older animals. In lambs 1.5 days of age, LTD4 (1 μg/kg) increased pulmonary vascular resistance by 66.1% (p < 0.05) and 1 week later by 210% (p < 0.001). These sequential observations in the same animal indicate that unlike PGD2, LTD4 is a pulmonary vasoconstrictor regardless of age, and its effectiveness increases significantly with age. These results support previous reports that PGD2 action in the pulmonary circulation changes shortly after birth from dilation to constriction.Key words: pulmonary circulation, newborn lamb, prostaglandin D2, leukotriene D4.


2013 ◽  
Vol 115 (12) ◽  
pp. 1838-1845 ◽  
Author(s):  
J. Christopher Bouwmeester ◽  
Israel Belenkie ◽  
Nigel G. Shrive ◽  
John V. Tyberg

The conventional determination of pulmonary vascular resistance does not indicate which vascular segments contribute to the total resistance of the pulmonary circulation. Using measurements of pressure and flow, the reservoir-wave model can be used to partition total pulmonary vascular resistance into arterial, microcirculation, and venous components. Changes to these resistance components are investigated during hypoxia and inhaled nitric oxide, volume loading, and positive end-expiratory pressure. The reservoir-wave model defines the pressure of a volume-related reservoir and the asymptotic pressure. The mean values of arterial and venous reservoir pressures and arterial and venous asymptotic pressures define a series of resistances between the main pulmonary artery and the pulmonary veins: the resistance of large and small arteries, the microcirculation, and veins. In 11 anaesthetized, open-chest dogs, pressure and flow were measured in the main pulmonary artery and a single pulmonary vein. Volume loading reduced each vascular resistance component, whereas positive end-expiratory pressure only increased microcirculation resistance. Hypoxia increased the resistance of small arteries and veins, whereas nitric oxide only decreased small-artery resistance significantly. The reservoir-wave model provides a novel method to deconstruct total pulmonary vascular resistance. The results are consistent with the expected physiological responses of the pulmonary circulation and provide additional information regarding which segments of the pulmonary circulation react to hypoxia and nitric oxide.


1995 ◽  
Vol 269 (6) ◽  
pp. H1965-H1972 ◽  
Author(s):  
J. Wong ◽  
V. M. Reddy ◽  
K. Hendricks-Munoz ◽  
J. R. Liddicoat ◽  
R. Gerrets ◽  
...  

Increased concentrations of endothelin-1 (ET-1) are found in children with congenital heart diseases that produce increased pulmonary blood flow and pulmonary hypertension, but the role of ET-1 in the pathophysiology of pulmonary hypertension is unclear. Therefore, we investigated ET-1-induced vasoactive responses and ET-1 concentrations in an animal model of pulmonary hypertension and increased pulmonary blood flow. Vascular shunts were placed between the ascending aorta and main pulmonary artery in seven late-gestation fetal sheep. Four weeks after spontaneous delivery, ET-1 increased pulmonary vascular resistance by 29.7 +/- 34.4% (P < 0.05), the ETb-receptor agonist [Ala1,3,11,15]ET-1 (4AlaET-1) had no effect, and the ETa-receptor antagonist cyclo(D-Asp-L-Pro-D-Val-L-Leu-D-Trp) (BQ-123) decreased pulmonary vascular resistance by -16.0 +/- 5.6% (P < 0.05). In contrast, in six control lambs with a similar degree of pulmonary hypertension induced by U-46619, ET-1 and 4AlaET-1 decreased pulmonary vascular resistance by 24.8 +/- 17.6, and 20.0 +/- 13.8%, respectively (P < 0.05). In addition, systemic arterial concentrations of immunoreactive ET-1 were elevated in lambs with pulmonary hypertension (29.2 +/- 9.6 vs. 15.2 +/- 10.7 pg/ml, P < 0.05). Pulmonary hypertension and increased pulmonary blood flow alters the response of ET-1 from pulmonary vasodilation to vasoconstriction. These altered responses suggest a role for ET-1 and its receptors in the pathogenesis of pulmonary hypertension secondary to increased pulmonary blood flow.


1961 ◽  
Vol 200 (2) ◽  
pp. 287-291 ◽  
Author(s):  
M. Harasawa ◽  
S. Rodbard

The effects of tetraethylammonium chloride (TEAC) and aminophylline on the pulmonary vascular resistance were studied in thoracotomized dogs. Pulmonary arterial blood flow and pressure, and systemic blood pressure were measured simultaneously. Both drugs showed marked hypotensive effects on the systemic vessels. In every instance pulmonary arterial pressures and blood flows were reduced by TEAC given via the pulmonary artery and increased by aminophylline. However, the calculated pulmonary vascular resistance remained essentially unchanged in all experiments. These data challenge the concept that the pulmonary vessels respond to these drugs by active vasodilatation


1972 ◽  
Vol 42 (3) ◽  
pp. 277-287 ◽  
Author(s):  
O. G. Thilenius ◽  
Carol Derenzo

1. Awake dogs with chronically implanted catheters (pulmonary artery, left atrium, aorta) and electromagnetic flow probe (main pulmonary artery) underwent five types of experiments in succession: (1) slow infusion of 0·4 m-hydrochloric acid; (2) rapid infusion of 1·0 m-sodium bicarbonate; (3) exposure to 30 min of hypoxia (10% O2); (4) exposure to hypoxia after arterial pH had been lowered to 7·30; (5) exposure to hypoxia after pH had been increased to 7·55. Intravascular pressures, pulmonary vascular resistance, cardiac output, arterial gas tension and pH were studied. 2. Acute acidosis (pH 7·21) resulted in a small rise in pulmonary artery pressure, cardiac output and pulmonary vascular resistance, associated with a decrease in Pa,co2. Acute alkalosis (pH 7·61) was accompanied by a small rise in pulmonary artery pressure, marked increase in cardiac output, a fall in pulmonary vascular resistance and mild elevation in Pa,co2. During acidosis hypoxia resulted in a more pronounced rise in pulmonary vascular resistance than during alkalosis (P < 0·01). 3. The study provides evidence that in the intact, awake dog with its compensatory mechanisms acute alkalosis decreases pulmonary vascular resistance by decreasing vascular tone and/or recruitment of pulmonary vascular channels; it diminishes the vasoconstrictive response to hypoxia; conversely, mild acidosis increases the pulmonary vascular resistance slightly and enhances vasoconstriction during hypoxia to a small extent.


1965 ◽  
Vol 208 (1) ◽  
pp. 130-138 ◽  
Author(s):  
G. J. A. Cropp

The resistance to blood flow in the pulmonary circulation of dogs (PVR) increased when their lungs were ventilated with 95–100% oxygen and were perfused with blood that recirculated only through the pulmonary circulation; the systemic circulation was perfused independently. This increase in PVR occurred even when nerves were cut or blocked but was abolished by inhaled isopropylarterenol aerosol. Elevation of intra-alveolar Po2 without increase in pulmonary arterial blood Po2 was sufficient to increase pulmonary vascular resistance. The pulmonary venules or veins were thought to be the likely site of the constriction. These reactions were qualitatively similar to those produced by injection of serotonin or histamine into the pulmonary circulation. The time course of the response and failure to obtain it when the blood was perfused through the remainder of the body before it re-entered the pulmonary circulation are compatible with a theory that high intra-alveolar O2 tension activates a vasoconstrictor material in the pulmonary parenchyma.


1985 ◽  
Vol 249 (3) ◽  
pp. H570-H576 ◽  
Author(s):  
S. J. Soifer ◽  
R. D. Loitz ◽  
C. Roman ◽  
M. A. Heymann

The factors responsible for maintaining the normally low pulmonary blood flow and high pulmonary vascular resistance in the fetus are not well understood. Since leukotrienes are potent pulmonary vasoconstrictors in many adult animal species, we determined whether leukotrienes were perhaps involved in the control of the fetal pulmonary circulation by studying the effects of putative leukotriene end organ antagonists in two groups of fetal lambs. In six fetal lambs studied at 130-134 days gestation, FPL 55712 increased pulmonary blood flow by 61% (P less than 0.05) and reduced pulmonary vascular resistance by 45% (P less than 0.05). There was a small increase in heart rate but no changes in pulmonary and systemic arterial pressures and systemic arterial blood gases. In six other fetal lambs studied at 130-140 days gestation, FPL 57231 increased pulmonary blood flow by 580% (P less than 0.05) and decreased pulmonary vascular resistance by 87% (P less than 0.05). Pulmonary and systemic arterial pressures decreased (P less than 0.05), and heart rate increased (P less than 0.05). Leukotriene end organ antagonism significantly increases fetal pulmonary blood flow and decreases pulmonary vascular resistance. Leukotrienes may play a role in the physiological control of the fetal pulmonary circulation.


Sign in / Sign up

Export Citation Format

Share Document