Effects of isoproterenol on the cardiovascular system of fetal sheep exposed to long-term high-altitude hypoxemia

1995 ◽  
Vol 78 (5) ◽  
pp. 1793-1799 ◽  
Author(s):  
M. Kamitomo ◽  
T. Ohtsuka ◽  
R. D. Gilbert

We exposed fetuses to high-altitude (3,820 m) hypoxemia from 30 to 130 days gestation, when we measured fetal heart rate, right and left ventricular outputs with electromagnetic flow probes, and arterial blood pressure during an isoproterenol dose-response infusion. We also measured the distribution of cardiac output with radiolabeled microspheres during the maximal isoproterenol dose. Baseline fetal arterial blood pressure was higher in long-term hypoxemic fetuses (50.1 +/- 1.3 vs. 43.4 +/- 1.0 mmHg) but fell during the isoproterenol infusion to 41.3 +/- 1.4 and 37.5 +/- 1.4 mmHg, respectively, at the highest dose. Heart rate was the same in both groups and did not differ during isoproterenol infusion. Baseline fetal cardiac output was lower in the hypoxemic group (339 +/- 18 vs. 436 +/- 19 ml.min-1.kg-1) due mainly to a reduction in right ventricular output. During the isoproterenol infusion, right ventricular output increased to the same extent in both hypoxemic and normoxic fetuses (approximately 35%); however, left ventricular output increased only approximately 15% in the hypoxemic group compared with approximately 40% in the normoxic group. The percent change in individual organ blood flows during isoproterenol infusion in the hypoxemic groups was not significantly different from the normoxic group. All of the mechanisms that might be responsible for the differential response of the fetal left and right ventricles to long-term hypoxia are not understood and need further exploration.

1991 ◽  
Vol 261 (1) ◽  
pp. H172-H180 ◽  
Author(s):  
L. M. Sassen ◽  
K. Bezstarosti ◽  
W. J. Van der Giessen ◽  
J. M. Lamers ◽  
P. D. Verdouw

Effects of pretreatment with L-propionylcarnitine (50 mg/kg, n = 9) or saline (n = 10) were studied in open-chest anesthetized pigs, in which ischemia was induced by decreasing left anterior descending coronary artery blood flow to 20% of baseline. After 60 min of ischemia, myocardium was reperfused for 2 h. In both groups, flow reduction abolished contractile function of the affected myocardium and caused similar decreases in ATP (by 55%) and energy charge [(ATP + 0.5ADP)/(ATP + ADP + AMP); decrease from 0.91 to 0.60], mean arterial blood pressure (by 10-24%), the maximum rate of rise in left ventricular pressure (by 26-32%), and cardiac output (by 20-30%). During reperfusion, “no-reflow” was attenuated by L-propionylcarnitine, because myocardial blood flow returned to 61 and 82% of baseline in the saline- and L-propionylcarnitine-treated animals, respectively. Cardiac output of the saline-treated animals further decreased (to 52% of baseline), and systemic vascular resistance increased from 46 +/- 3 to 61 +/- 9 mmHg.min.l-1, thereby maintaining arterial blood pressure. In L-propionylcarnitine-treated pigs, cardiac output remained at 75% of baseline, and systemic vascular resistance decreased from 42 +/- 3 to 38 +/- 4 mmHg.min.l-1. In both groups, energy charge but not the ATP level of the ischemic-reperfused myocardium tended to recover, whereas the creatine phosphate level showed significantly more recovery in saline-treated animals. We conclude that L-propionylcarnitine partially preserved vascular patency in ischemic-reperfused porcine myocardium but had no immediate effect on “myocardial stunning.” Potential markers for long-term recovery were not affected by L-propionylcarnitine.


1999 ◽  
Vol 277 (2) ◽  
pp. H576-H583 ◽  
Author(s):  
José González-Alonso ◽  
Ricardo Mora-Rodríguez ◽  
Edward F. Coyle

We determined whether the deleterious effects of dehydration and hyperthermia on cardiovascular function during upright exercise were attenuated by elevating central blood volume with supine exercise. Seven trained men [maximal oxygen consumption (V˙o 2 max) 4.7 ± 0.4 l/min (mean ± SE)] cycled for 30 min in the heat (35°C) in the upright and in the supine positions (V˙o 2 2.93 ± 0.27 l/min) while maintaining euhydration by fluid ingestion or while being dehydrated by 5% of body weight after 2 h of upright exercise. When subjects were euhydrated, esophageal temperature (Tes) was 37.8–38.0°C in both body postures. Dehydration caused equal hyperthermia during both upright and supine exercise (Tes = 38.7–38.8°C). During upright exercise, dehydration lowered stroke volume (SV), cardiac output, mean arterial pressure (MAP), and cutaneous vascular conductance and increased heart rate and plasma catecholamines [30 ± 6 ml, 3.0 ± 0.7 l/min, 6 ± 2 mmHg, 22 ± 8%, 14 ± 2 beats/min, and 50–96%, respectively; all P < 0.05]. In contrast, during supine exercise, dehydration did not cause significant alterations in MAP, cutaneous vascular conductance, or plasma catecholamines. Furthermore, supine versus upright exercise attenuated the increases in heart rate (7 ± 2 vs. 9 ± 1%) and the reductions in SV (13 ± 4 vs. 21 ± 3%) and cardiac output (8 ± 3 vs. 14 ± 3%) (all P< 0.05). These results suggest that the decline in cutaneous vascular conductance and the increase in plasma norepinephrine concentration, independent of hyperthermia, are associated with a reduction in central blood volume and a lower arterial blood pressure.


1991 ◽  
Vol 260 (1) ◽  
pp. H254-H259
Author(s):  
R. Maass-Moreno ◽  
C. F. Rothe

We tested the hypothesis that the blood volumes of the spleen and liver of cats are reflexly controlled by the carotid sinus (CS) baroreceptors. In pentobarbital-anesthetized cats the CS area was isolated and perfused so that intracarotid pressure (Pcs) could be controlled while maintaining a normal brain blood perfusion. The volume changes of the liver and spleen were estimated by measuring their thickness using ultrasonic techniques. Cardiac output, systemic arterial blood pressure (Psa), central venous pressure, central blood volume, total peripheral resistance, and heart rate were also measured. In vagotomized cats, increasing Pcs by 100 mmHg caused a significant reduction in Psa (-67.8%), cardiac output (-26.6%), total peripheral resistance (-49.5%), and heart rate (-15%) and significantly increased spleen volume (9.7%, corresponding to a 2.1 +/- 0.5 mm increase in thickness). The liver volume decreased, but only by 1.6% (0.6 +/- 0.2 mm decrease in thickness), a change opposite that observed in the spleen. The changes in cardiovascular variables and in spleen volume suggest that the animals had functioning reflexes. These results indicate that in pentobarbital-anesthetized cats the carotid baroreceptors affect the volume of the spleen but not the liver and suggest that, although the spleen has an active role in the control of arterial blood pressure in the cat, the liver does not.


1977 ◽  
Vol 53 (1) ◽  
pp. 17-25
Author(s):  
C. Liang ◽  
W. B. Hood

1. Cardiac output increased in proportion to oxygen consumption in intact chloralose-anaesthetized dogs after four successive intravenous infusions of 2,4-dinitrophenol (11 μmol/kg; 2 mg/kg). 2. Splenectomy abolished the increase in cardiac output after the first three doses of 2,4-dinitrophenol. β-Adrenoreceptor blockade by practolol, on the other hand, did not prevent the cardiac output rise after the first 2,4-dinitrophenol infusion, but further increases by 2,4-dinitrophenol infusion were abolished. When splenectomy and β-adrenoreceptor blockade were combined, cardiac output did not increase significantly after all four doses of 2,4-dinitrophenol. 3. Cardiac output and mean systemic arterial blood pressure increased when the splenic venous blood collected after 2,4-dinitrophenol infusion was infused intraportally. 4. In a vascularly isolated, but normally innervated, lower half-body cross-perfusion preparation, cardiac output and mean systemic arterial blood pressure increased in the upper half-body when tissue hypermetabolism was produced in the cross-perfused area by 2,4-dinitrophenol. Neither pulmonary artery wedge pressure nor heart rate changed significantly. 5. This circulatory stimulation, after regional 2,4-dinitrophenol infusion, was abolished or was prevented from occurring by splenectomy. 6. It appears that the normal cardiac output response to tissue hypermetabolism requires both an intact spleen and normally functioning β-adrenoreceptors.


1996 ◽  
Vol 80 (6) ◽  
pp. 1921-1927 ◽  
Author(s):  
G. Ahlborg ◽  
A. Ottosson-Seeberger ◽  
A. Hemsen ◽  
J. M. Lundberg

Big endothelin-1 (Big ET-1) was given intravenously to six healthy men to study uptakes and vascular effects. Blood samples were taken from systemic and pulmonary arterial and internal jugular and deep forearm venous catheters. Arterial Big ET-1-like immunoreactivity (Big ET-1-LI) increased from 5.43 +/- 0.60 to 756 +/- 27 pmol/l, and ET-1-LI increased from 4.67 +/- 0.08 to 6.67 +/- 0.52 pmol/l (P < 0.001). Skeletal muscle fractional extraction of Big ET-1-LI was 15 +/- 4%. ET-1-LI release did not increase in the studied vascular beds. Heart rate fell by 17% (P < 0.001), cardiac output fell by 26% (P < 0.001), and stroke volume fell by 11% (P < 0.05). Mean arterial blood pressure increased 18%, systemic vascular resistance increased 65%, and pulmonary vascular resistance increased 57% (P < 0.01-0.001). Pulmonary blood pressures, forearm blood flow, arterial pH, arterial PCO2, and systemic arterial-internal jugular venous O2 difference remained unchanged. No specific Big ET-1 receptors were found in human pulmonary membranes. The half-maximal inhibitory concentration for the receptor antagonist bosentan was 181 nM. In summary, circulating Big ET-1 elicits greater increases in mean arterial blood pressure and systemic vascular resistance and decreases in heart rate and cardiac output compared with an equimolar ET-1 infusion (26).


1991 ◽  
Vol 9 (4) ◽  
pp. 345-353 ◽  
Author(s):  
Alberto Genovesi-Ebert ◽  
Claudio Marabotti ◽  
Carlo Palombo ◽  
Stefano Giaconi ◽  
Sergio Ghione

Sign in / Sign up

Export Citation Format

Share Document