cutaneous vascular conductance
Recently Published Documents


TOTAL DOCUMENTS

99
(FIVE YEARS 6)

H-INDEX

33
(FIVE YEARS 2)

Author(s):  
John D. Akins ◽  
Rauchelle E. Richey ◽  
Jeremiah C. Campbell ◽  
Zachary T. Martin ◽  
Guillermo Olvera ◽  
...  

Non-Hispanic black (BL) individuals have the greatest prevalence of cardiovascular disease (CVD), relative to other racial/ethnic groups (e.g., non-Hispanic white population; WH) which may be secondary to blunted vascular function. While women typically present with reduced CVD relative to men of the same racial/ethnic group, the prevalence is similar between BL women and men though the mechanisms differ. This study hypothesized that reduced microvascular function in young, BL women is associated with endothelin-1 (ET-1) overactivity or insufficient L-arginine bioavailability. Nine BL and 9 WH women participated (age: 20 ± 2 vs. 22 ± 2 y). Cutaneous microvascular function was assessed during 39°C local heating, while Lactated Ringer's (control), BQ-123 (ET-1 receptor type A antagonist), BQ-788 (ET-1 receptor type B antagonist), or L-arginine was infused via intradermal microdialysis to modify cutaneous vascular conductance (CVC). Subsequent infusion of Nω-nitro-L-arginine methyl ester allowed for quantification of the nitric oxide (NO) contribution to vasodilation, while combined sodium nitroprusside and 43°C heating allowed for normalization to maximal CVC (%CVCmax). BL women had blunted %CVCmax and NO contribution to dilation during the 39°C plateau (P < 0.027 for both). BQ-123 improved thisresponse through augmented NO-mediated dilation (P < 0.048 for both). BQ-788 and L-arginine, did not alter the CVC responses (P > 0.835 for both) or the NO contribution (P > 0.371 for both). Cutaneous microvascular function is reduced in BL women, and ET-1 receptor type A may contribute to this reduced function. Further research is needed to better characterize these mechanisms in young, BL women.


Author(s):  
Naoto Fujii ◽  
Glen P. Kenny ◽  
Tatsuro Amano ◽  
Yasushi Honda ◽  
Narihiko Kondo ◽  
...  

Na+/K+-ATPase is integrally involved in mediating cutaneous vasodilation during an exercise-heat stress, which includes an interactive role with nitric oxide synthase (NOS). Here, we assessed if Na+/K+-ATPase also contributes to cutaneous thermal hyperemia induced by local skin heating, which is commonly employed to assess cutaneous endothelium-dependent vasodilation. Further, we assessed the extent to which NOS contributes to this response. Cutaneous vascular conductance (CVC) was measured continuously at four forearm skin sites in eleven young adults (4 women). After baseline measurement, local skin temperature was increased from 33 to 39 ºC to induce cutaneous thermal hyperemia. Once a plateau in CVC was achieved, each skin site was continuously perfused via intradermal microdialysis with either: 1) lactated Ringer's solution (control), 2) 6 mM ouabain, a Na+/K+-ATPase inhibitor, 3) 20 mM L-NAME, a NOS inhibitor, or 4) a combination of both. Relative the control site, CVC during the plateau phase of cutaneous thermal hyperemia (~50%max) was reduced by the lone inhibition of Na+/K+-ATPase (-19±8%max, P = 0.038) and NOS (-32±4%max, P < 0.001) as well as the combined inhibition of both (-37±9%max, P < 0.001). The magnitude of reduction was similar between NOS inhibition alone and combined inhibition (P = 1.000). The administration of Na+/K+-ATPase and NOS inhibitors fully abolished the plateau of CVC with values returning to pre-heating baseline values (P = 0.439). We show that Na+/K+-ATPase contributes to cutaneous thermal hyperemia during local skin heating to 39 ºC, and this response is partially mediated by NOS.


2021 ◽  
Vol 53 (8S) ◽  
pp. 80-80
Author(s):  
Marissa N. Baranauskas ◽  
Cody A. Altherr ◽  
Andrew R. Coggan ◽  
Zachary J. Schlader ◽  
Stephen J. Carter

2019 ◽  
Vol 317 (4) ◽  
pp. R571-R575 ◽  
Author(s):  
Nisha Charkoudian ◽  
Katherine M. Mitchell ◽  
Beau R. Yurkevicius ◽  
Adam J. Luippold ◽  
Karleigh E. Bradbury ◽  
...  

Exposure to hot environments augments cutaneous vasodilation and sweating during exercise compared with these responses in cooler environments. The effects of hypobaric hypoxia on these responses are less clear, as are the effects of heat and simulated altitude combined. We evaluated the individual and potential additive effects of environmental heat and hypobaric hypoxia on skin blood flow and sweating responses during exercise. Thirteen volunteers (11 M, 2 F; age 25.3 ± 6.1 yr; height 177 ± 9 cm; weight 81.2 ± 16.8 kg) completed 30 min of steady-state (SS) exercise on a cycle ergometer at 50% V̇o2peak during four separate conditions: 1) sea level thermoneutral (SLTN; 250 m, 20°C, 30–50% RH), 2) sea level hot (SLH; 250 m, 35°C, 30% RH), 3) simulated altitude thermoneutral (ATN; 3,000 m, 20°C, 30–50% RH), and 4) simulated altitude hot (AH; 3,000 m, 35°C, 30% RH). Skin blood flow and local sweating rate (LSR) were recorded on the ventral forearm. During exercise, SS cutaneous vascular conductance in AH (63 ± 31% peak) and SLH (52 ± 19% peak) were significantly higher than both SLTN (20 ± 9% peak, P < 0.001) and ATN (25 ± 12% peak, P < 0.05) but were not different from each other ( P > 0.05). SS LSR was similarly increased in the hot environments but unaffected by simulated altitude. We propose that multiple antagonistic mechanisms during exposure to 3,000-m simulated altitude result in no net effect on skin blood flow or sweating responses during exercise in thermoneutral or hot environments.


2019 ◽  
Vol 126 (3) ◽  
pp. 771-781 ◽  
Author(s):  
Jem L. Cheng ◽  
Maureen J. MacDonald

In addition to its role as an environmental stressor, scientists have recently demonstrated the potential for heat to be a therapy for improving or mitigating declines in arterial health. Many studies at both ends of the scientific controls spectrum (tightly controlled, experimental vs. practical) have demonstrated the beneficial effects of heating on microvascular function (e.g., reactive hyperemia, cutaneous vascular conductance); endothelial function (e.g., flow-mediated dilation); and arterial stiffness (e.g., pulse-wave velocity, compliance, β-stiffness index). It is important to note that findings of beneficial effects are not unanimous, likely owing to the varied methodology in both heating protocols and assessments of outcome measures. Mechanisms of action for the effects of both acute and chronic heating are also understudied. Heat science is a very promising area of human physiology research, as it has the potential to contribute to approaches addressing the global cardiovascular disease burden, particularly in aging and at risk populations, and those for whom exercise is not feasible or recommended.


2019 ◽  
Vol 316 (1) ◽  
pp. R13-R20 ◽  
Author(s):  
Nathan B. Morris ◽  
Georgia K. Chaseling ◽  
Anthony R. Bain ◽  
Ollie Jay

This study sought to determine whether the temperature of water ingested before exercise alters the onset threshold and subsequent thermosensitivity of local vasomotor and sudomotor responses after exercise begins. Twenty men [24 (SD 4) yr of age, 75.8 (SD 8.1) kg body mass, 52.3 (SD 7.7) ml·min−1·kg−1peak O2consumption (V̇o2peak)] ingested 1.5°C, 37°C, or 50°C water (3.2 ml/kg), rested for 5 min, and then cycled at 50% V̇o2peakfor 15 min at 23.0 (SD 0.9) °C and 32 (SD 10) % relative humidity. Mean body temperature (Tb), local sweat rate (LSR), and skin blood flow (SBF) were measured. In a subset of eight men [25 (SD 5) yr of age, 78.6 (SD 8.3) kg body mass, 48.9 (SD 11.1) ml·min−1·kg−1V̇o2peak], blood pressure was measured and cutaneous vascular conductance (CVC) was determined. The change in Tbwas greater at the onset of LSR measurement with ingestion of 1.5°C than 50°C water [ΔTb= 0.19 (SD 0.15) vs. 0.11 (SD 0.12) °C, P = 0.04], but not 37°C water [ΔTb= 0.14 (SD 0.14) °C, P = 0.23], but did not differ between trials for SBF measurement [ΔTb= 0.18 (SD 0.15) °C, 0.11 (SD 0.13) °C, and 0.09 (SD 0.09) °C with 1.5°C, 37°C, and 50°C water, respectively, P = 0.07]. Conversely, the thermosensitivity of LSR and SBF was not different [LSR = 1.11 (SD 0.75), 1.11 (SD 0.75), and 1.34 (SD 1.11) mg·min−1·cm−2·°C−1with 1.5°C, 37°C, and 50°C ingested water, respectively ( P = 0.46); SBF = 717 (SD 882), 517 (SD 606), and 857 (SD 904) %baseline arbitrary units (AU)/°C with 1.5°C, 37°C, and 50°C ingested water, respectively ( P = 0.95)]. After 15 min of exercise, LSR and SBF were greater with ingestion of 50°C than 1.5°C water [LSR = 0.40 (SD 0.17) vs. 0.31 (SD 0.19) mg·min−1·cm−2( P = 0.02); SBF = 407 (SD 149) vs. 279 (SD 117) %baseline AU ( P < 0.001)], but not 37°C water [LSR = 0.50 (SD 0.22) mg·min−1·cm−2; SBF = 324 (SD 169) %baseline AU]. CVC was statistically unaffected [275 (SD 81), 340 (SD 114), and 384 (SD 160) %baseline CVC with 1.5°C, 37°C, and 50°C ingested water, respectively, P = 0.30]. Collectively, these results support the concept that visceral thermoreceptors modify the central drive for thermoeffector responses.


2018 ◽  
Vol 315 (4) ◽  
pp. H1063-H1071 ◽  
Author(s):  
Jordan C. Patik ◽  
Bryon M. Curtis ◽  
Aida Nasirian ◽  
Jennifer R. Vranish ◽  
Paul J. Fadel ◽  
...  

The black population exhibits attenuated vasodilatory function across their lifespan, yet little is known regarding the mechanisms of this impairment. Recent evidence suggests a potential role for oxidative stress. Therefore, we tested the hypothesis that NADPH oxidase (NOX) and/or xanthine oxidase (XO) contribute to blunted nitric oxide (NO)-mediated cutaneous microvascular function in young black adults. In 30 white and black subjects (8 men and 7 women in each group), local heating was performed while NOX and XO were inhibited by apocynin and allopurinol, respectively, via intradermal microdialysis. The plateau in cutaneous vascular conductance (red blood cell flux/mean arterial pressure) during 39°C local heating at each site was compared with a control site perfused with lactated Ringer solution. Subsequent inhibition of NO synthase via Nω-nitro-l-arginine methyl ester allowed for quantification of the NO contribution to vasodilation during heating. Black individuals, relative to white individuals, had a blunted cutaneous vascular conductance plateau at the control site (45 ± 9 vs. 68 ± 13%max, P < 0.001) that was increased by both apocynin (61 ± 15%max, P < 0.001) and allopurinol (58 ± 17%max, P = 0.005). Black men and black women had similar responses to heating at the control site ( P = 0.99), yet apocynin and allopurinol increased this response only in black men (both P < 0.001 vs. control). The NO contribution was also increased via apocynin and allopurinol exclusively in black men. These findings suggest that cutaneous microvascular function is reduced because of NOX and XO activity in black men but not black women, identifying a novel sex difference in the mechanisms that contribute to blunted vascular responses in the black population. NEW & NOTEWORTHY We demonstrate that cutaneous microvascular responses to local heating are consistently reduced in otherwise healthy young black men and women relative to their white counterparts. Inhibition of NADPH oxidase and xanthine oxidase via apocynin and allopurinol, respectively, augments microvascular function in black men but not black women. These data reveal clear sex differences in the mechanisms underlying the racial disparity in cutaneous microvascular function.


2018 ◽  
Vol 315 (3) ◽  
pp. R539-R546
Author(s):  
Claire E. Trotter ◽  
Faith K. Pizzey ◽  
Philip M. Batterson ◽  
Robert A. Jacobs ◽  
James Pearson

We investigated whether small reductions in skin temperature 60 s after the onset of a simulated hemorrhagic challenge would improve tolerance to lower body negative pressure (LBNP) after exercise heat stress. Eleven healthy subjects completed two trials (High and Reduced). Subjects cycled at ~55% maximal oxygen uptake wearing a warm water-perfused suit until core temperatures increased by ~1.2°C before lying supine and undergoing LBNP to presyncope. LBNP tolerance was quantified as cumulative stress index (CSI; product of each LBNP level multiplied by time; mmHg·min). Skin temperature was similarly elevated from baseline before LBNP and remained elevated 60 s after the onset of LBNP in both High (37.72 ± 0.52°C) and Reduced (37.95 ± 0.54°C) trials (both P < 0.0001). At 60%CSI skin temperature remained elevated in the High trial (37.51 ± 0.56°C) but was reduced to 34.97 ± 0.72°C by the water-perfused suit in the Reduced trial ( P < 0.0001 between trials). Cutaneous vascular conductance was not different between trials [High: 1.57 ± 0.43 vs. Reduced: 1.39 ± 0.38 arbitrary units (AU)/mmHg; P = 0.367] before LBNP but decreased to 0.67 ± 0.19 AU/mmHg at 60%CSI in the Reduced trial while remaining unchanged in the High trial ( P = 0.002 between trials). CSI was higher in the Reduced (695 ± 386 mmHg·min) relative to the High (441 ± 290 mmHg·min; P = 0.023) trial. Mean arterial pressure was not different between trials at presyncope (High: 62 ± 10 vs. Reduced: 62 ± 9 mmHg; P = 0.958). Small reductions in skin temperature after the onset of a simulated hemorrhagic challenge improve LBNP tolerance after exercise heat stress. This may have important implications regarding treatment of an exercise heat-stressed individual (e.g., soldier) who has experienced a hemorrhagic injury.


2017 ◽  
Vol 313 (1) ◽  
pp. R51-R57 ◽  
Author(s):  
Megan M. Wenner ◽  
Kelly N. Sebzda ◽  
Andrew V. Kuczmarski ◽  
Ryan T. Pohlig ◽  
David G. Edwards

Endothelin-1 (ET-1) contributes to age-related endothelial dysfunction in men via the ETAreceptor. However, there are sex differences in the ET-1 system, and ETBreceptors are modulated by sex hormones. The purpose of this study was to test the hypothesis that ETBreceptors contribute to impaired vasodilatory function in postmenopausal women (PMW). We measured flow-mediated dilation (FMD) using ultrasound, and cutaneous nitric oxide-mediated vasodilation during local heating (42°C) via laser Doppler flowmetry in 18 young women (YW; 22 ± 1 yr) and 16 PMW (56 ± 1 yr). Cutaneous microdialysis perfusions of lactated Ringer (control), an ETBreceptor antagonist (BQ-788, 300 nM), and an ETAreceptor antagonist (BQ-123, 500 nM), were done through separate fibers, followed by perfusions of sodium nitroprusside (28 mM) and local heating to 43°C (max). Cutaneous vascular conductance (CVC) was calculated as cutaneous blood flow/mean arterial pressure and expressed as a percent of maximal dilation. FMD (YW: 7.5 ± 0.5 vs. PMW: 5.6 ± 0.6%) and cutaneous vasodilation (YW: 93 ± 2 vs. PMW: 83 ± 4%CVCmax) were lower in PMW (both P < 0.05). Blockade of ETBreceptors decreased cutaneous vasodilation in YW (87 ± 2%CVCmax; P < 0.05 vs. control) but increased vasodilation in PMW (93 ± 1%CVCmax; P < 0.05 vs. control). ETAreceptor blockade had minimal effect in YW (92 ± 1%CVCmax) but increased cutaneous vasodilation in PMW (91 ± 2%CVCmax; P < 0.05 vs. control). In conclusion, ETBreceptors mediate vasodilation in YW, but this effect is lost after menopause. Impaired vasodilatory function in PMW is due in part to a loss of ETB-mediated dilation.


Sign in / Sign up

Export Citation Format

Share Document