Chronic exposure to ozone causes tolerance to airway hyperresponsiveness in guinea pigs: lack of SOD role

1998 ◽  
Vol 84 (5) ◽  
pp. 1749-1755 ◽  
Author(s):  
Mario H. Vargas ◽  
Laura Romero ◽  
Bettina Sommer ◽  
Pedro Zamudio ◽  
Pascal Gustin ◽  
...  

Tolerance to respiratory effects of O3 has been demonstrated for anatomic and functional changes, but information about tolerance to O3-induced airway hyperresponsiveness (AHR) is scarce. In guinea pigs exposed to air or O3 (0.3 parts/million, 4 h/day, for 1, 3, 6, 12, 24, or 48 days, studied 16–18 h later), pulmonary insufflation pressure changes induced by intravenous substance P (SP, 0.032–3.2 μg/kg) were measured, then the animals were subjected to bronchoalveolar lavage (BAL). Bronchial rings with or without phosphoramidon were also evaluated 3 h after air or a single O3 exposure. O3 caused in vivo AHR (increased sensitivity) to SP after 1, 3, 6, 12, and 24 days of exposure compared with control. However, after 48 days of exposure, O3 no longer caused AHR. Total cell, macrophage, neutrophil, and eosinophil counts in BAL were increased in most O3-exposed groups. When data from all animals were pooled, we found a highly significant correlation between degree of airway responsiveness and total cells ( r = 0.55), macrophages ( r = 0.54), neutrophils ( r = 0.47), and eosinophils ( r = 0.53), suggesting that airway inflammation is involved in development of AHR to SP. Superoxide dismutase (SOD) levels in BAL fluids were increased ( P < 0.05) after 1, 3, 6, and 12 days of O3 exposure and returned to basal levels after 24 and 48 days of exposure. O3 failed to induce hyperresponsiveness to SP in bronchial rings, and phosphoramidon increased responses to SP in air- and O3-exposed groups, suggesting that neutral endopeptidase inactivation was not involved in O3-induced AHR to SP in vivo. We conclude that chronic exposure to 0.3 ppm O3, a concentration found in highly polluted cities, resulted in tolerance to AHR to SP in guinea pigs by an SOD-independent mechanism.

1988 ◽  
Vol 65 (6) ◽  
pp. 2585-2591 ◽  
Author(s):  
D. J. Dusser ◽  
E. Umeno ◽  
P. D. Graf ◽  
T. Djokic ◽  
D. B. Borson ◽  
...  

To determine whether neutral endopeptidase (NEP), also called enkephalinase (EC 3.4.24.11), modulates the effects of exogenous and endogenous tachykinins in vivo, we studied the effects of aerosolized phosphoramidon, a specific NEP inhibitor, on the responses to aerosolized substance P (SP) and on the atropine-resistant response to vagus nerve stimulation (10 V, 5 ms for 20 s) in guinea pigs. SP alone (10(-7) to 10(-4) M; each concentration, 7 breaths) caused no change in total pulmonary resistance (RL, P greater than 0.5). Phosphoramidon (10(-4) M, 90 breaths) caused no change either in base-line RL (P greater than 0.5) or in the response to aerosolized acetylcholine (P greater than 0.5). However, in the presence of phosphoramidon, SP (7 breaths) produced a concentration-dependent increase in RL at concentrations greater than or equal to 10(-5) M (P less than 0.001). Phosphoramidon (10(-7) to 10(-4) M; each concentration, 90 breaths) induced a concentration-dependent potentiation of SP-induced bronchoconstriction (10(-4) M, 7 breaths; P less than 0.01). Vagus nerve stimulation (0.5-3 Hz), in the presence of atropine, induced a frequency-dependent increase in RL (P less than 0.001). Phosphoramidon potentiated the atropine-resistant responses to vagus nerve stimulation (P less than 0.001) at frequencies greater than 0.5 Hz. The tachykinin antagonist [D-Arg1,D-Pro2,D-Trp7,9,Leu11]-substance P abolished the effects of phosphoramidon on the atropine-resistant response to vagus nerve stimulation (2 Hz, P less than 0.005). NEP-like activity in tracheal homogenates of guinea pig was inhibited by phosphoramidon with a concentration producing 50% inhibition of 5.3 +/- 0.8 nM.(ABSTRACT TRUNCATED AT 250 WORDS)


2005 ◽  
Vol 115 (2) ◽  
pp. S149
Author(s):  
H. Nishimura ◽  
K. Tokuyama ◽  
H. Arakawa ◽  
Y. Ohki ◽  
H. Mochizuki ◽  
...  

1993 ◽  
Vol 239 (1-3) ◽  
pp. 277 ◽  
Author(s):  
Antoon J.M. Van Oosterhout ◽  
Ingrid Van Ark ◽  
Gerard Hofman ◽  
Huub F.J. Savelkoul ◽  
Frans P. Nijkamp

1993 ◽  
Vol 75 (1) ◽  
pp. 185-190 ◽  
Author(s):  
O. Kawano ◽  
H. Kohrogi ◽  
T. Yamaguchi ◽  
S. Araki ◽  
M. Ando

To determine whether endogenous tachykinins are released in allergic airway response to contribute to bronchoconstriction and whether neutral endopeptidase (NEP), which effectively cleaves tachykinins, modulates that bronchoconstriction, we studied the effects of the NEP inhibitor phosphoramidon on bronchoconstriction induced by allergic response in anesthetized guinea pigs. We mechanically ventilated the guinea pigs sensitized with ovalbumin (OVA) in a bodyplethysmograph and measured the pulmonary resistance (RL). We exposed the sensitized guinea pigs to doubling concentrations of OVA aerosols from 2(-5)% (wt/vol) until the transpulmonary pressure increased more than twofold from the baseline. After the final exposure, we exposed them to phosphoramidon (10(-4) M) or its vehicle. Phosphoramidon significantly potentiated the increased RL induced by OVA challenge. Phosphoramidon also significantly potentiated the increased RL in the guinea pigs treated with atropine, but the potentiation was significantly reduced. In contrast, phosphoramidon failed to potentiate the increased RL induced by OVA in guinea pigs pretreated with capsaicin. These results suggest that 1) endogenous tachykinin-like substances are released in allergic airway response and that 2) when endogenous NEP is inhibited in the guinea pig airways in vivo, the substances contribute to bronchoconstriction by partly activating the parasympathetic nerve.


1990 ◽  
Vol 68 (4) ◽  
pp. 1316-1320 ◽  
Author(s):  
K. Ishida ◽  
P. D. Pare ◽  
R. J. Thomson ◽  
R. R. Schellenberg

Repeated aerosol antigen challenge of previously sensitized guinea pigs induces airway hyperresponsiveness to inhaled acetylcholine. To determine the mechanism producing these airway changes and assuming that changes in the trachealis muscle reflect changes in muscle of the entire tracheobronchial tree, we examined the in vitro smooth muscle mechanics and morphometric parameters of tracheae from guinea pigs demonstrating hyperresponsiveness in vivo vs. tracheae from control guinea pigs. No differences between these groups were found in luminal volume at zero transmural pressure, passive pressure-volume characteristics, or area of airway wall. Smooth muscle areas were slightly less in tracheae from hyperresponsive guinea pigs. Tracheae from hyperresponsive guinea pigs had both significantly increased isovolumetric force generation and isobaric shortening compared with tracheae from controls when evaluated over the range of transmural pressures from -40 to 40 cmH2O. We conclude that the in vivo airway hyperresponsiveness induced with repeated antigen challenge is associated with both increased force generation and shortening of tracheal smooth muscle without increased muscle mass, suggesting enhanced contractile activity.


1993 ◽  
Vol 236 (3) ◽  
pp. 379-383 ◽  
Author(s):  
Antoon J.M. Van Oosterhout ◽  
Ingrid Van Ark ◽  
Gerard Hofman ◽  
Huub F.J. Savelkoul ◽  
Frans P. Nijkamp

2002 ◽  
Vol 129 (4) ◽  
pp. 320-326 ◽  
Author(s):  
Hideko Nishimura ◽  
Kenichi Tokuyama ◽  
Hirokazu Arakawa ◽  
Yasushi Ohki ◽  
Akira Sato ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document