scholarly journals Hindlimb heating increases vascular access of large molecules to murine tibial growth plates measured by in vivo multiphoton imaging

2014 ◽  
Vol 116 (4) ◽  
pp. 425-438 ◽  
Author(s):  
Maria A. Serrat ◽  
Morgan L. Efaw ◽  
Rebecca M. Williams

Advances in understanding the molecular regulation of longitudinal growth have led to development of novel drug therapies for growth plate disorders. Despite progress, a major unmet challenge is delivering therapeutic agents to avascular-cartilage plates. Dense extracellular matrix and lack of penetrating blood vessels create a semipermeable “barrier,” which hinders molecular transport at the vascular-cartilage interface. To overcome this obstacle, we used a hindlimb heating model to manipulate bone circulation in 5-wk-old female mice ( n = 22). Temperatures represented a physiological range of normal human knee joints. We used in vivo multiphoton microscopy to quantify temperature-enhanced delivery of large molecules into tibial growth plates. We tested the hypothesis that increasing hindlimb temperature from 22°C to 34°C increases vascular access of large systemic molecules, modeled using 10, 40, and 70 kDa dextrans that approximate sizes of physiological regulators. Vascular access was quantified by vessel diameter, velocity, and dextran leakage from subperichondrial plexus vessels and accumulation in growth plate cartilage. Growth plate entry of 10 kDa dextrans increased >150% at 34°C. Entry of 40 and 70 kDa dextrans increased <50%, suggesting a size-dependent temperature enhancement. Total dextran levels in the plexus increased at 34°C, but relative leakage out of vessels was not temperature dependent. Blood velocity and vessel diameter increased 118% and 31%, respectively, at 34°C. These results demonstrate that heat enhances vascular carrying capacity and bioavailability of large molecules around growth plates, suggesting that temperature could be a noninvasive strategy for modulating delivery of therapeutics to impaired growth plates of children.

2017 ◽  
Vol 123 (5) ◽  
pp. 1101-1109 ◽  
Author(s):  
Maria A. Serrat ◽  
Gabriela Ion

Bones elongate through endochondral ossification in cartilaginous growth plates located at ends of primary long bones. Linear growth ensues from a cascade of biochemical signals initiated by actions of systemic and local regulators on growth plate chondrocytes. Although cellular processes are well defined, there is a fundamental gap in understanding how growth regulators are physically transported from surrounding blood vessels into and through dense, avascular cartilage matrix. Intravital imaging using in vivo multiphoton microscopy is one promising strategy to overcome this barrier by quantitatively tracking molecular delivery to cartilage from the vasculature in real time. We previously used in vivo multiphoton imaging to show that hindlimb heating increases vascular access of large molecules to growth plates using 10-, 40-, and 70-kDa dextran tracers. To comparatively evaluate transport of similarly sized physiological regulators, we developed and validated methods for measuring uptake of biologically active IGF-I into proximal tibial growth plates of live 5-wk-old mice. We demonstrate that fluorescently labeled IGF-I (8.2 kDa) is readily taken up in the growth plate and localizes to chondrocytes. Bioactivity tests performed on cultured metatarsal bones confirmed that the labeled protein is functional, assessed by phosphorylation of its signaling kinase, Akt. This methodology, which can be broadly applied to many different proteins and tissues, is relevant for understanding factors that affect delivery of biologically relevant molecules to the skeleton in real time. Results may lead to the development of drug-targeting strategies to treat a wide range of bone and cartilage pathologies. NEW & NOTEWORTHY This paper describes and validates a novel method for imaging transport of biologically active, fluorescently labeled IGF-I into skeletal growth plates of live mice using multiphoton microscopy. Cellular patterns of fluorescence in the growth plate were completely distinct from our prior publications using biologically inert probes, demonstrating for the first time in vivo localization of IGF-I in chondrocytes and perichondrium. These results form important groundwork for future studies aimed at targeting therapeutics into growth plates.


2009 ◽  
Vol 106 (6) ◽  
pp. 2016-2025 ◽  
Author(s):  
Maria A. Serrat ◽  
Rebecca M. Williams ◽  
Cornelia E. Farnum

Solute delivery to avascular cartilaginous plates is critical to bone elongation, and impaired transport of nutrients and growth factors in cartilage matrix could underlie many skeletal abnormalities. Advances in imaging technology have revolutionized our ability to visualize growth plates in vivo, but quantitative methods are still needed. We developed analytical standards for measuring solute delivery, defined by amount and rate of intravenous tracer entry, in murine growth plates using multiphoton microscopy. We employed an acute temperature model because of its well-established impact on bone circulation and tested the hypothesis that solute delivery changes positively with limb temperature when body core and respiration are held constant (36°C, 120 breaths/min). Tibial growth plates were surgically exposed in anesthetized 5-wk-old mice, and their hindlimbs were immersed in warm (36°C) or cool (23°C) saline ( n = 6/group). After 30 min of thermal equilibration, we administered an intracardiac injection of fluorescein (50 μl, 0.5%) and captured sequentially timed growth plate images spanning 10 min at standardized depth. Absolute growth plate fluorescence was normalized to vascular concentrations for interanimal comparisons. As predicted, more fluorescein infiltrated growth plates at 36°C, with standardized values nearly double those at 23°C. Changing initial limb temperature did not alter baseline values, suggesting a sustained response period. These data validate the sensitivity of our system and have relevance to strategies for enhancing localized delivery of therapeutic agents to growth plates of children. Applications of this technique include assessment of solute transport in models of growth plate dysfunction, particularly chondrodysplasias with matrix irregularities.


2010 ◽  
Vol 108 (1) ◽  
pp. 172-180 ◽  
Author(s):  
Adi Reich ◽  
Stav Simsa Maziel ◽  
Ziv Ashkenazi ◽  
Efrat Monsonego Ornan

Enzymes from the matrix metalloproteinase (MMP) family play a crucial role in growth-plate vascularization and ossification via proteolytic cleavage and remodeling of the extracellular matrix. Their regulation in the growth plate is crucial for normal matrix assembly. Endochondral ossification, which takes place at the growth plates, is influenced by mechanical loading. Using an in vivo avian model for mechanical loading, we have found increased blood penetration into the growth plates of loaded chicks. The purpose of this work was to study the involvement of MMP-2, -3, -9, -13, and -16 in the growth plate's response to loading and in the catch-up growth resulting from load release. We found that mechanical loading, as well as release from load, upregulated MMP-2, -9, and -13 expressions. In contrast, MMP-3, associated with cartilage injuries, and its associated protein connective tissue growth factor (CTGF), were downregulated by the load. However, after release from load, MMP-3 was upregulated and CTGF levels were elevated and caught up with the control. MMP-3 and CTGF were also downregulated after 60 min of mechanical stretching in vitro. These results demonstrate the central role of MMPs in the growth plate's response to mechanical loading, as well as in the catch-up growth followed load release.


2017 ◽  
Author(s):  
Ahmed M. Hassan ◽  
Xu Wu ◽  
Jeremy W. Jarrett ◽  
Shihan Xu ◽  
David R. Miller ◽  
...  

AbstractDeep in vivo imaging of vasculature requires small, bright, and photostable fluorophores suitable for multiphoton microscopy (MPM). Although semiconducting polymer dots (pdots) are an emerging class of highly fluorescent contrast agents with favorable advantages for the next generation of in vivo imaging, their use for deep multiphoton imaging has never before been demonstrated. Here we characterize the multiphoton properties of three pdot variants (CNPPV, PFBT, and PFPV) and demonstrate deep imaging of cortical microvasculature in C57 mice. Specifically, we measure the two-versus three-photon power dependence of these pdots and observe a clear three-photon excitation signature at wavelengths longer than 1300 nm, and a transition from two-photon to three-photon excitation within a 1060 – 1300 nm excitation range. Furthermore, we show that pdots enable in vivo two-photon imaging of cerebrovascular architecture in mice up to 850 μm beneath the pial surface using 800 nm excitation. In contrast with traditional multiphoton probes, we also demonstrate that the broad multiphoton absorption spectrum of pdots permits imaging at longer wavelengths (λex = 1,060 and 1225 nm). These wavelengths approach an ideal biological imaging wavelength near 1,300 nm and confer compatibility with a high-power ytterbium-fiber laser and a high pulse energy optical parametric amplifier, resulting in substantial improvements in signal-to-background ratio (>3.5-fold) and greater cortical imaging depths of 900 μm and 1300 μm. Ultimately, pdots are a versatile tool for MPM due to their extraordinary brightness and broad absorption, which will undoubtedly unlock the ability to interrogate deep structures in vivo.


2009 ◽  
Vol 02 (01) ◽  
pp. 45-60 ◽  
Author(s):  
CHIU-MEI HSUEH ◽  
WEN LO ◽  
SUNG-JAN LIN ◽  
TSUNG-JEN WANG ◽  
FUNG-RUNG HU ◽  
...  

Multiphoton microscopy (MPM), with the advantages of improved penetration depth, decreased photo-damage, and optical sectioning capability, has become an indispensable tool for biomedical imaging. The combination of multiphoton fluorescence (MF) and second-harmonic generation (SHG) microscopy is particularly effective in imaging tissue structures of the ocular surface. This work is intended to be a review of advances that MPM has made in ophthalmic imaging. The MPM not only can be used for the label-free imaging of ocular structures, it can also be applied for investigating the morphological alterations in corneal pathologies, such as keratoconus, infected keratitis, and corneal scar. Furthermore, the corneal wound healing process after refractive surgical procedures such as conductive keratoplasty (CK) can also be studied with MPM. Finally, qualitative and quantitative SHG microscopy is effective for characterizing corneal thermal denaturation. With additional development, multiphoton imaging has the potential to be developed into an effective imaging technique for in vivo studies and clinical diagnosis in ophthalmology.


Sign in / Sign up

Export Citation Format

Share Document