cartilage growth
Recently Published Documents


TOTAL DOCUMENTS

193
(FIVE YEARS 30)

H-INDEX

32
(FIVE YEARS 5)

2021 ◽  

In the past, the treatment of pectus carinatum has been managed by open, invasive surgical procedures, which involved the resection of cartilage growth plates (Ravitch procedure). By preventing normal bony growth and maturity, this technique often led to postoperative complications, such as acquired thoracic dystrophy, chronic pain and scarring, and stiffness of the whole anterior chest. Dyspnea and exercise intolerance due to restricted thoracic space and cardiac compression were not uncommon as well. Over the last 2 decades, nonsurgical and minimally invasive approaches have gained ground because it was recognized that simple sternal compression was able to remodel the elastic anterior chest wall and therefore correct pectus carinatum adequately/efficiently, at least in children. However, failure of this compressive brace treatment is not uncommon in adolescents and older patients. Abramson therefore developed a minimally invasive technique for the correction of pectus carinatum using a pectus bar that is placed anteriorly to the sternum. The procedure is less invasive and less risky than a pectus bar inserted for pectus excavatum, but the lateral fixation of the pectus bar in the Abramson procedure remains a challenge. We demonstrate the technical aspects of the procedure step by step including our solution for fixation of the stabilizers.


2021 ◽  
Author(s):  
Brenda J. Mengeling ◽  
Lara F. Vetter ◽  
J. David Furlow

Thyroid hormone (TH) signaling plays critical roles during vertebrate development, including regulation of skeletal and cartilage growth. TH acts through its receptors (TRs), nuclear hormone receptors (NRs) that heterodimerize with Retinoid-X receptors (RXRs), to regulate gene expression. A defining difference between NR signaling during development compared to in adult tissues, is competence, the ability of the organism to respond to an endocrine signal. Amphibian metamorphosis, especially in Xenopus laevis, the African clawed frog, is a well-established in vivo model for studying the mechanisms of TH action during development. Previously, we have used one-week post-fertilization X. laevis tadpoles, which are only partially competent to TH, to show that in the tail, which is naturally refractive to exogenous T3 at this stage, RXR agonists increase TH competence, and that RXR antagonism inhibits the TH response. Here, we focused on the jaw that undergoes dramatic TH-mediated remodeling during metamorphosis in order to support new feeding and breathing styles. We used a battery of approaches in one-week-old tadpoles, including quantitative morphology, differential gene expression and whole mount cell proliferation assays, to show that both pharmacologic (bexarotene) and environmental (tributyltin) RXR agonists potentiated TH-induced responses but were inactive in the absence of TH; and the RXR antagonist UVI 3003 inhibited TH action. At this young age, the lower jaw has not developed to the point that T3-induced changes produce an adult-like jaw morphology, and we found that increasing TH competence with RXR agonists did not give us a more natural-metamorphic phenotype, even though Bex and TBT significantly potentiated cellular proliferation and the TH induction of runx2, a transcription factor critical for developing cartilage and bone. Prominent targets of RXR-mediated TH potentiation were members of the matrix metalloprotease family, suggesting that RXR potentiation may emphasize pathways responsible for rapid changes during development.


2021 ◽  
Author(s):  
Ruiye Bi ◽  
Xueting Luo ◽  
Qianli Li ◽  
Peiran Li ◽  
Yi Fan ◽  
...  

Objective: Investigate functional roles of Igf1 in fibrocartilage stem cell (FCSC) for temporomandibular joint (TMJ) cartilage growth and homeostasis. Methods: Gli1-CreER+; RosaTdTomato mice were used for validating FCSCs lineage labeling efficiency. In Gli1-/Col2-CreER+; Igf1fl/fl mice, TMJ cartilage morphological and functional changes were characterized at 4 weeks and 5 months after Igf1 deletion. H&E, Safranine O and immuno-histochemistry staining were performed. FCSCs specificity were characterized using EdU and TUNEL staining. A unilateral anterior crossbite (UAC) mouse model was generated for mimicking TMJ osteoarthritis status. Results: In Gli1-CreER+; RosaTdTomato mice, RFP labeled FCSCs showed favorable proliferative capacity. 4 weeks after Igf1 deletion, Gli1+ and Col2+ cell lineages led to distinct pathological changes of TMJ cartilage morphology. A more serious reduction of cartilage thickness and cell density were found in the superficial layers in Gli1-CreER+; Igf1fl/fl mice. 5 months after Igf1 deletion, more severe disordered cell arrangement in TMJ cartilage were found in both groups with Gli1+ and Col2+ specific deletion of Igf1. Immunostaining showed that PI3K/Akt signaling pathway was blocked in the superficial layers of TMJ in Gli1-CreER+; RosaTdTomato mice. Finally, deletion of Igf1 in FCSCs significantly aggravated osteoarthritis (OA) phenotypic changes in TMJ in UAC mice model, characterized in decreased cartilage thickness, cell numbers and loss of extracellular matrix secretion. Conclusion: Igf1 deletion disrupted stem cell functions of FCSCs, leading to disordered cell distribution during TMJ growth, as well as exaggerated the OA process in TMJ under pathological condition. In TMJ cartilage, Igf1 expression in FCSCs is critical for PI3K/Akt activation, which may be involved in regulating FCSCs self-renewal and differentiation.


2021 ◽  
Author(s):  
Manci Li ◽  
Juan E. Abrahante ◽  
Amanda Vegoe ◽  
Yi Wen Chai ◽  
Beth Lindborg ◽  
...  

Despite holding great therapeutic potential, existing protocols for in vitro chondrogenesis and hyaline cartilage production from human induced pluripotent stem cells (hiPSC) are laborious and complex with unclear long-term consequences. Here, we developed a simple xeno- and feeder-free protocol for human hyaline cartilage production in vitro using hydrogel-cultured multi-tissue organoids (MTOs). We investigate gene regulatory networks during spontaneous hiPSC-MTO differentiation using RNA sequencing and bioinformatic analyses. We find the interplays between BMPs and neural FGF pathways are associated with the phenotype transition of MTOs. We recognize TGF-beta/BMP and Wnt signaling likely contribute to the long-term maintenance of MTO cartilage growth and further adoption of articular cartilage development. By comparing the MTO transcriptome with human lower limb chondrocytes, we observe that the expression of chondrocyte-specific genes in MTO shows a strong correlation with fetal lower limb chondrocytes. Collectively, our findings describe the self-organized emergence of hyaline cartilage in MTO, its associated molecular pathways, and its spontaneous adoption of articular cartilage development trajectory.


2021 ◽  
Author(s):  
Nicholas B. Holowka ◽  
Ian J. Wallace ◽  
Alexander Mathiessen ◽  
Robert Mang’eni Ojiambo ◽  
Paul Okutoyi ◽  
...  

Bone Research ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Cuicui Wang ◽  
Jun Ying ◽  
Xiangfeng Niu ◽  
Xiaofei Li ◽  
Gary J. Patti ◽  
...  

AbstractGlucose metabolism is fundamental for the functions of all tissues, including cartilage. Despite the emerging evidence related to glucose metabolism in the regulation of prenatal cartilage development, little is known about the role of glucose metabolism and its biochemical basis in postnatal cartilage growth and homeostasis. We show here that genetic deletion of the glucose transporter Glut1 in postnatal cartilage impairs cell proliferation and matrix production in growth plate (GPs) but paradoxically increases cartilage remnants in the metaphysis, resulting in shortening of long bones. On the other hand, articular cartilage (AC) with Glut1 deficiency presents diminished cellularity and loss of proteoglycans, which ultimately progress to cartilage fibrosis. Moreover, predisposition to Glut1 deficiency severely exacerbates injury-induced osteoarthritis. Regardless of the disparities in glucose metabolism between GP and AC chondrocytes under normal conditions, both types of chondrocytes demonstrate metabolic plasticity to enhance glutamine utilization and oxidation in the absence of glucose availability. However, uncontrolled glutamine flux causes collagen overmodification, thus affecting extracellular matrix remodeling in both cartilage compartments. These results uncover the pivotal and distinct roles of Glut1-mediated glucose metabolism in two of the postnatal cartilage compartments and link some cartilage abnormalities to altered glucose/glutamine metabolism.


Author(s):  
Pranidhi Baddam ◽  
Daniel Young ◽  
Garett Dunsmore ◽  
Chunpeng Nie ◽  
Farah Eaton ◽  
...  

The nasal septum cartilage is a specialized hyaline cartilage important for normal midfacial growth. Abnormal midfacial growth is associated with midfacial hypoplasia and nasal septum deviation (NSD). However, the underlying genetics and associated functional consequences of these two anomalies are poorly understood. We have previously shown that loss of Bone Morphogenetic Protein 7 (BMP7) from neural crest (BMP7ncko) leads to midfacial hypoplasia and subsequent septum deviation. In this study we elucidate the cellular and molecular abnormalities underlying NSD using comparative gene expression, quantitative proteomics, and immunofluorescence analysis. We show that reduced cartilage growth and septum deviation are associated with acquisition of elastic cartilage markers and share similarities with osteoarthritis (OA) of the knee. The genetic reduction of BMP2 in BMP7ncko mice was sufficient to rescue NSD and suppress elastic cartilage markers. To our knowledge this investigation provides the first genetic example of an in vivo cartilage fate switch showing that this is controlled by the relative balance of BMP2 and BMP7. Cellular and molecular changes similar between NSD and knee OA suggest a related etiology underlying these cartilage abnormalities.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Seth D. Thompson ◽  
Rajeswari Pichika ◽  
Richard L. Lieber ◽  
Mitra Lavasani

Abstract Background Osteoarthritis (OA) is one of the most prevalent joint diseases of advanced age and is a leading cause of disability worldwide. Ageing is a major risk factor for the articular cartilage (AC) degeneration that leads to OA, and the age-related decline in regenerative capacity accelerates OA progression. Here we demonstrate that systemic transplantation of a unique population of adult multipotent muscle-derived stem/progenitor cells (MDSPCs), isolated from young wild-type mice, into Zmpste24−/− mice (a model of Hutchinson-Gilford progeria syndrome, a condition marked by accelerated ageing), prevents ageing-related homeostatic decline of AC. Results MDSPC treatment inhibited expression of cartilage-degrading factors such as pro-inflammatory cytokines and extracellular matrix-proteinases, whereas pro-regenerative markers associated with cartilage mechanical support and tensile strength, cartilage resilience, chondrocyte proliferation and differentiation, and cartilage growth, were increased. Notably, MDSPC transplantation also increased the expression level of genes known for their key roles in immunomodulation, autophagy, stress resistance, pro-longevity, and telomere protection. Our findings also indicate that MDSPC transplantation increased proteoglycan content by regulating chondrocyte proliferation. Conclusions Together, these findings demonstrate the ability of systemically transplanted young MDSPCs to preserve a healthy homeostasis and promote tissue regeneration at the molecular and tissue level in progeroid AC. These results highlight the therapeutic potential of systemically delivered multipotent adult stem cells to prevent age-associated AC degeneration.


2021 ◽  
Vol 41 ◽  
pp. 531-545
Author(s):  
N Khatib ◽  
◽  
C Parisi ◽  
NC Nowlan

Developmental engineering strategies aim to recapitulate aspects of development in vitro as a means of forming functional engineered tissues, including cartilage and bone, for tissue repair and regeneration. Biophysical stimuli arising from fetal movements are critical for guiding skeletogenesis, but there have been few investigations of the biomechanical parameters which optimally promote cartilage and bone development events in in vitro explants. The effect of applied flexion-extension movement frequencies (0.33 and 0.67 Hz) and durations (2 h periods, 1, 2 or 3 × per day) on knee (stifle) joint cartilage shape, chondrogenesis and diaphyseal mineralisation of fetal chick hindlimbs, cultured in a mechanostimulation bioreactor, were assessed both quantitatively and qualitatively. It was hypothesised that increasing frequency and duration of movements would synergistically promote cartilage and bone formation in a dose-dependent manner. Increasing loading duration promoted cartilage growth, shape development and mineralisation of the femoral condyles and tibiotarsus. While increasing frequency had a significant positive effect on mineralisation, hyaline cartilage growth and joint shape were unaffected by frequency change within the ranges assessed, and there were limited statistical interactions between the effects of movement frequency and duration on cartilage or bone formation. Increased glycosaminoglycan deposition and cell proliferation may have contributed to the accelerated cartilage growth and shape change under increasing loading duration. The results demonstrated that frequencies and durations of applied biomechanical stimulation differentially promoted cartilage and bone formation, with implications for developmentally inspired tissue engineering strategies aiming to modulate tissue construct properties.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Mengqi Guan ◽  
Daian Pan ◽  
Mei Zhang ◽  
Xiangyang Leng ◽  
Baojin Yao

Abstract Background Deer antler is a zoological exception due to its fantastic characteristics, including amazing growth rate and repeatable regeneration. Deer antler has been used as a key ingredient in traditional Chinese medicine relating to kidney and bone health for centuries. The aim of this study was to dissect the molecular regulation of deer antler extract (DAE) on xiphoid cartilage (XC). Methods The DAE used in this experiment was same as the one that was prepared as previously described. The specific pathogen-free (SPF) grade Sprague-Dawley (SD) rats were randomly divided into blank group (n =10) and DAE group (n =10) after 1-week adaptive feeding. The DAE used in this experiment was same as the one that was prepared as previously described. The rats in DAE group were fed with DAE for 3 weeks at a dose of 0.2 g/kg per day according to the body surface area normalization method, and the rats in blank group were fed with drinking water. Total RNA was extracted from XC located in the most distal edge of the sternum. Illumina RNA sequencing (RNA-seq) in combination with quantitative real-time polymerase chain reaction (qRT-PCR) validation assay was carried out to dissect the molecular regulation of DAE on XC. Results We demonstrated that DAE significantly increased the expression levels of DEGs involved in cartilage growth and regeneration, but decreased the expression levels of DEGs involved in inflammation, and mildly increased the expression levels of DEGs involved in chondrogenesis and chondrocyte proliferation. Conclusions Our findings suggest that DAE might serve as a complementary therapeutic regent for cartilage growth and regeneration to treat cartilage degenerative disease, such as osteoarthritis.


Sign in / Sign up

Export Citation Format

Share Document