scholarly journals Phase response curves of subthalamic neurons measured with synaptic input and current injection

2012 ◽  
Vol 108 (7) ◽  
pp. 1822-1837 ◽  
Author(s):  
Michael A. Farries ◽  
Charles J. Wilson

Infinitesimal phase response curves (iPRCs) provide a simple description of the response of repetitively firing neurons and may be used to predict responses to any pattern of synaptic input. Their simplicity makes them useful for understanding the dynamics of neurons when certain conditions are met. For example, the sizes of evoked phase shifts should scale linearly with stimulus strength, and the form of the iPRC should remain relatively constant as firing rate varies. We measured the PRCs of rat subthalamic neurons in brain slices using corticosubthalamic excitatory postsynaptic potentials (EPSPs; mediated by both AMPA- and NMDA-type receptors) and injected current pulses and used them to calculate the iPRC. These were relatively insensitive to both the size of the stimulus and the cell's firing rate, suggesting that the iPRC can predict the response of subthalamic nucleus cells to extrinsic inputs. However, the iPRC calculated using EPSPs differed from that obtained using current pulses. EPSPs (normalized for charge) were much more effective at altering the phase of subthalamic neurons than current pulses. The difference was not attributable to the extended time course of NMDA receptor-mediated currents, being unaffected by blockade of NMDA receptors. The iPRC provides a good description of subthalamic neurons' response to input, but iPRCs are best estimated using synaptic inputs rather than somatic current injection.

2005 ◽  
Vol 94 (2) ◽  
pp. 1623-1635 ◽  
Author(s):  
Boris S. Gutkin ◽  
G. Bard Ermentrout ◽  
Alex D. Reyes

Neuronal firing is determined largely by incoming barrages of excitatory postsynaptic potentials (EPSPs), each of which produce a transient increase in firing probability. To measure the effects of weak transient inputs on firing probability of cortical neurons, we compute phase-response curves (PRCs). PRCs, whose shape can be related to the dynamics of spike generation, document the changes in timing of spikes caused by an EPSP in a repetitively firing neuron as a function of when it arrives in the interspike interval (ISI). The PRC can be exactly related to the poststimulus time histogram (PSTH) so that knowledge of one uniquely determines the other. Typically, PRCs have zero values at the start and end of the ISI, where EPSPs have minimal effects and a peak in the middle. Where the peak occurs depends in part on the firing properties of neurons. The PRC can have regions of positivity and negativity corresponding respectively to speeding up and slowing down the time of the next spike. A simple canonical model for spike generation is introduced that shows how both the background firing rate and the degree of postspike afterhyperpolarization contribute to the shape of the PRC and thus to the PSTH. PRCs in strongly adapting neurons are highly skewed to the right (indicating a higher change in probability when the EPSPs appear late in the ISI) and can have negative regions (indicating a decrease in firing probability) early in the ISI. The PRC becomes more skewed to the right as the firing rate decreases. Thus at low firing rates, the spikes are triggered preferentially by inputs that occur only during a small time interval late in the ISI. This implies that the neuron is more of a coincidence detector at low firing frequencies and more of an integrator at high frequencies. The steady-state theory is shown to also hold for slowly varying inputs.


Author(s):  
Marshaun N. Fitzpatrick ◽  
Yangyang Wang ◽  
Peter J. Thomas ◽  
Roger D. Quinn ◽  
Nicholas S. Szczecinski

2016 ◽  
Vol 26 (6) ◽  
pp. 063105 ◽  
Author(s):  
Igor Franović ◽  
Srdjan Kostić ◽  
Matjaž Perc ◽  
Vladimir Klinshov ◽  
Vladimir Nekorkin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document