fault dynamics
Recently Published Documents


TOTAL DOCUMENTS

36
(FIVE YEARS 9)

H-INDEX

10
(FIVE YEARS 2)

Author(s):  
Alik Ismail-Zadeh ◽  
Alexander Soloviev

AbstractDynamics of lithospheric plates resulting in localisation of tectonic stresses and their release in large earthquakes provides important information for seismic hazard assessments. Numerical modelling of the dynamics and earthquake simulations have been changing our view about occurrences of large earthquakes in a system of major regional faults and about the recurrence time of the earthquakes. Here, we overview quantitative models of tectonic stress generation and stress transfer, models of dynamic systems reproducing basic features of seismicity, and fault dynamics models. Then, we review the thirty-year efforts in the modelling of lithospheric block-and-fault dynamics, which allowed us to better understand how the blocks react to the plate motion, how stresses are localised and released in earthquakes, how rheological properties of fault zones exert influence on the earthquake dynamics, where large seismic events occur, and what is the recurrence time of these events. A few key factors influencing the earthquake sequences, clustering, and magnitude are identified including lithospheric plate driving forces, the geometry of fault zones, and their physical properties. We illustrate the effects of the key factors by analysing the block-and-fault dynamics models applied to several earthquake-prone regions, such as Carpathians, Caucasus, Tibet-Himalaya, and the Sunda arc, as well as to the global tectonic plate dynamics.


Author(s):  
Wujiu Pan ◽  
Liangyu Ling ◽  
Haoyong Qu ◽  
Minghai Wang

Abstract The aim of this paper is to establish a typical gear coupled rotor system model and give an analysis of the early wear of the tooth surface. The tooth surface wear will cause the change of the backlash. Different from previous studies on the backlash, the backlash in this paper is a dynamic fractal backlash, which is obtained based on the fractal wear model of the tooth surface. Firstly, based on the FA (Flodin and Andersson) model and our previous studies on the contact analysis of rough surfaces, a fractal wear model of tooth surface is established. Then, the system vibration response of embedded dynamic fractal backlash is compared with that of embedded fixed backlash. The results show that the traditional fixed backlash cannot reflect the small changes of the system response, while the dynamic fractal backlash can sensitively reflect changes of dynamic characteristics of the system, so this kind of mathematical model considering dynamic fractal wear will be more conducive to the analysis and prediction of gear wear faults in engineering.


2020 ◽  
Author(s):  
Hanna Blanck ◽  
Halldór Geirsson ◽  
Kristín Vogfjörd ◽  
Vala Hjörleifsdóttir

<p>The Hengill volcanic complex in SW-Iceland is located on a triple junction where two extensive and one conservative plate boundary meet. An uplift event, possibly caused by a magmatic intrusion, in the 1990ies caused a landrise of 8 cm over the period of 4 years and was accompanied by more than 90.000, mostly very small, earthquakes. We used cross-correlation to improve pick accuracy and applied a relative relocation algorithm to get high resolution earthquake locations of the earthquakes in the direct vicinity of the centre of the uplift. Relocated earthquake location reveal clustering and alignments of earthquakes that are mostly oriented in NNE and ENE direction. Then we recalculated focal mechanisms for the new locations and then use the Quakelook software to select the best fitting focal mechanism. Quakelook calculates a plane that best fits the locations of a cluster of earthquakes which then is compared to the database of possible focal mechanisms that all explain the polarity and amplitude data similar well. The projection of the slip vectors into the fault plane is then used to estimate the average movement along the fault. From the fault dynamics we learn about the stresses activating that fault.</p><p>The relocated earthquake distribution shows that the stresses induced by the uplift event must have been small in comparison to the regional stress since the activated faults do not respect the geometry of the uplift source but are rather in agreement to the regional stress field. The uplift did not cause any new breaks in the crust but rather reactivated existing faults which sub-optimally oriented in relation to the uplift.</p>


2019 ◽  
Vol 365 ◽  
pp. 239-248 ◽  
Author(s):  
Jingting Zhang ◽  
Chengzhi Yuan ◽  
Paolo Stegagno ◽  
Wei Zeng ◽  
Cong Wang

Sensors ◽  
2019 ◽  
Vol 19 (11) ◽  
pp. 2648 ◽  
Author(s):  
Mariusz Buciakowski ◽  
Marcin Pazera ◽  
Marcin Witczak

The main objective of this paper is to develop an actuator and sensor fault estimation framework taking into account various uncertainty sources. In particular, these are divided into three groups: sensor measurement noise, process-external exogenous disturbances, as well as unknown fault dynamics. Unlike the approaches presented in the literature, here they are not processed in the same way but treated separately in a suitably tailored fashion. Finally, the approach resolves to minimizing their effect on the fault estimation error in either the H 2 or H ∞ sense. As a result, a mixed performance–based actuator fault estimation framework is obtained, along with its convergence conditions. The final part of the paper presents performance analysis results obtained for a DC servo-motor. Subsequently, another three-tank-system-based example is presented. In both cases, the proposed approach is compared with an alternative one, which clearly exhibits its superiority.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Wen-Hsien Li ◽  
Chi-Hung Lee ◽  
Ma-Hsuan Ma ◽  
Ping Jung Huang ◽  
Sheng Yun Wu

Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Cun Chen ◽  
Xueping Li ◽  
Jingli Ren

A generalization of a Burridge-Knopoff spring-block model is investigated to illustrate the dynamics of transform faults. The model can undergo Hopf bifurcation and fold bifurcation of limit cycles. Considering the cyclical nature of the spring stiffness, the model with periodic perturbation is further explored via a continuation technique and numerical bifurcation analysis. It is shown that the periodic perturbation induces abundant dynamics, the existence, the switch, and the coexistence of multiple attractors including periodic solutions with various periods, quasiperiodic solutions, chaotic solutions through torus destruction, or cascade of period doublings. Throughout the results obtained, one can see that the system manifests complex dynamical behaviors such as chaos, self-organized criticality, and the transition of dynamical behaviors when it comes to periodic perturbations. Even very small variation of a parameter can result in radical changes of the dynamics, which provides a new insight into the fault dynamics.


2019 ◽  
Vol 14 (4) ◽  
Author(s):  
Yang Liu ◽  
Xicheng Xin ◽  
Yulai Zhao ◽  
Shuaishuai Ming ◽  
Yaxin Ma ◽  
...  

The phenomenon of oil film oscillation and frequency locked may occur in a healthy rotor system which is supported by sliding bearing. The dynamic behavior of the rotor system with misalignment and rubbing coupling fault supported by sliding bearing is also very complex. To solve the problem of fault diagnosis in this case, a dynamical model of rotor system is proposed in this paper. The short bearing oil film force, the equivalent misalignment moment, and Hertz contact theory are applied to establish the model. For rubbing faults, the Augmented Lagrange method is used to deal with the contact constraints to ensure that the boundary penetration depth is within the specified tolerance range. Furthermore, the dynamic behavior of the faulty rotor system under different rubbing stiffness conditions is analyzed in this paper. Meanwhile, the fault signal is divided into equal-band by the wavelet basis functions to find out the fault frequency band of the rotor system. Finally, the accuracy of the simulation study is verified by measurements obtained from the faulty rotor test platform. The following findings are made in this paper. The rubbing fault is dominant in the coupling fault. With the increasing of the speed, the frequency components of the system are dominated by high frequency. The double frequency is the main fault feature frequency band. It can be seen that the rotor system moves gradually from a quasi-periodic state into chaos due to the Lyapunov exponent. At the same time, due to the effects of misalignment moment and friction force, the phenomenon of oil film instability is partially suppressed. The lagging of the first and second-order oil film oscillations occurs.


2018 ◽  
Vol 10 (1) ◽  
Author(s):  
Guangxing Niu ◽  
Shije Tang ◽  
Zhichao Liu ◽  
Guangquan Zhao ◽  
Bin Zhang

Fault diagnosis and prognosis (FDP) plays more and more important role in industries FDP aims to estimate current fault condition and then predict the remaining useful life (RUL). Based on the estimation of health state and RUL, essential decisions on maintenance, control, and planning can be conducted optimally in terms of economy, efficiency, and availability. With the increase of system complexity, it becomes more and more difficult to model the fault dynamics, especially for multiple interacting fault modes and for fault modes that are affected by many internal and external factors. With the development of machine learning and big data, deep learning algorithms become important tools in FDP due to their excellent performance in data processing, information extraction, and automatic modeling. In the past a few years, deep learning algorithms demonstrate outstanding performance in feature extraction and learning fault dynamics. As emerging techniques, their powerful learning capabilities attract more and more attentions and have been extended to various applications. This work presents a novel diagnosis and prognosis methodology which combined deep belief networks (DBNs) and Bayesian estimation. In the proposed work, the DBNs are trained offline using available historical data. The fault dynamic model is then represented by the trained DBNs and modeling uncertainty is described by noise. The integration of DBNs with particle filtering is then developed to provide an estimation of the current fault state and predict the remaining useful life, which is very suitable and efficient for most nonlinear fault models. Experimental studies of lithium-ion batteries are presented to verify the effectiveness of the proposed solution.


Sign in / Sign up

Export Citation Format

Share Document