Journal of Biological Rhythms
Latest Publications


TOTAL DOCUMENTS

1717
(FIVE YEARS 164)

H-INDEX

105
(FIVE YEARS 8)

Published By Sage Publications

1552-4531, 0748-7304

2022 ◽  
pp. 074873042110694
Author(s):  
Miguel F. Perea ◽  
Daniel A. Perdomo ◽  
Zenaida A. Corredor ◽  
Mario González ◽  
Hugo Hernandez-Fonseca ◽  
...  

A robust body of evidence has demonstrated that the lunar cycle plays an important role in the reproduction of fish living in natural environments. However, little is known about the influence of the moon on tilapia reproductive activity in intensive fish farming systems. This study aims to evaluate the influence of the lunar cycle on the reproductive performance of tilapias in an intensive outdoor tropical production system in Latin America. Records of two tilapia strains (Nile tilapia [ Oreochromis niloticus; n = 75] and Red tilapia [ Oreochromis spp.; n = 1335]) reared in concrete tanks in a commercial fish farm were analyzed. Over a 3-year period, 60,136 captures were made in intervals of 12 to 14 days and 6,600 females were manually spawned. The number of females spawned and the volume of eggs collected from each tank ( n = 9) were recorded. Data was analyzed by the general linear model and means were compared by least squares means method. A very slight or no variation was observed when the lunar cycle was split into two halves (crescent and waning). The proportions of females spawned and the volume of eggs per spawned female and per female in the tank varied considerably across the eight periods of the lunar cycle, with greater values in the waning than in the crescent phase. A significantly greater proportion of tilapia spawned and yielded more eggs around the full moon than around the new moon and remaining days of the lunar cycle. The moon cycle affected the reproductive activity of tilapia, which were more reproductively active around the full moon and most of the waning phase.


2022 ◽  
pp. 074873042110694
Author(s):  
Ciearra B. Smith ◽  
Vincent van der Vinne ◽  
Eleanor McCartney ◽  
Adam C. Stowie ◽  
Tanya L. Leise ◽  
...  

Circadian rhythms are endogenously generated physiological and molecular rhythms with a cycle length of about 24 h. Bioluminescent reporters have been exceptionally useful for studying circadian rhythms in numerous species. Here, we report development of a reporter mouse generated by modification of a widely expressed and highly rhythmic gene encoding D-site albumin promoter binding protein ( Dbp). In this line of mice, firefly luciferase is expressed from the Dbp locus in a Cre recombinase-dependent manner, allowing assessment of bioluminescence rhythms in specific cellular populations. A mouse line in which luciferase expression was Cre-independent was also generated. The Dbp reporter alleles do not alter Dbp gene expression rhythms in liver or circadian locomotor activity rhythms. In vivo and ex vivo studies show the utility of the reporter alleles for monitoring rhythmicity. Our studies reveal cell-type-specific characteristics of rhythms among neuronal populations within the suprachiasmatic nuclei ex vivo. In vivo studies show Dbp-driven bioluminescence rhythms in the liver of Albumin-Cre;Dbp KI/+ “liver reporter” mice. After a shift of the lighting schedule, locomotor activity achieved the proper phase relationship with the new lighting cycle more rapidly than hepatic bioluminescence did. As previously shown, restricting food access to the daytime altered the phase of hepatic rhythmicity. Our model allowed assessment of the rate of recovery from misalignment once animals were provided with food ad libitum. These studies confirm the previously demonstrated circadian misalignment following environmental perturbations and reveal the utility of this model for minimally invasive, longitudinal monitoring of rhythmicity from specific mouse tissues.


2022 ◽  
pp. 074873042110597
Author(s):  
Nathan J. Klett ◽  
Olga Cravetchi ◽  
Charles N. Allen

Both inhibitory and excitatory GABA transmission exist in the mature suprachiasmatic nucleus (SCN), the master pacemaker of circadian physiology. Whether GABA is inhibitory or excitatory depends on the intracellular chloride concentration ([Cl−]i). Here, using the genetically encoded ratiometric probe Cl-Sensor, we investigated [Cl−]i in AVP and VIP-expressing SCN neurons for several days in culture. The chloride ratio (RCl) demonstrated circadian rhythmicity in AVP + neurons and VIP + neurons, but was not detected in GFAP + astrocytes. RCl peaked between ZT 7 and ZT 8 in both AVP + and VIP + neurons. RCl rhythmicity was not dependent on the activity of several transmembrane chloride carriers, action potential generation, or the L-type voltage-gated calcium channels, but was sensitive to GABA antagonists. We conclude that [Cl−]i is under circadian regulation in both AVP + and VIP + neurons.


2022 ◽  
pp. 074873042110653
Author(s):  
Xiangpan Kong ◽  
Simone M. Ota ◽  
Deborah Suchecki ◽  
Andy Lan ◽  
Anouk I. Peereboom ◽  
...  

Uncontrollable stress is linked to the development of many diseases, some of which are associated with disrupted daily rhythms in physiology and behavior. While available data indicate that the master circadian pacemaker in the suprachiasmatic nucleus (SCN) is unaffected by stress, accumulating evidence suggest that circadian oscillators in peripheral tissues and organs can be shifted by a variety of stressors and stress hormones. In the present study, we examined effects of acute and chronic social defeat stress in mice and addressed the question of whether effects of uncontrollable stress on peripheral clocks are tissue specific and depend on time of day of stress exposure. We used mice that carry a luciferase reporter gene fused to the circadian clock gene Period2 (PER2::LUC) to examine daily rhythms of PER2 expression in various peripheral tissues. Mice were exposed to social defeat stress in the early (ZT13-14) or late (ZT21-22) dark phase, either once (acute stress) or repeatedly on 10 consecutive days (chronic stress). One hour after the last stressor, tissue samples from liver, lung, kidney, and white adipose tissue (WAT) were collected. Social defeat stress caused a phase delay of several hours in the rhythm of PER2 expression in lung and kidney, but this delay was stronger after chronic than after acute stress. Moreover, shifts only occurred after stress in the late dark phase, not in the early dark phase. PER2 rhythms in liver and WAT were not significantly shifted by social defeat, suggesting a different response of various peripheral clocks to stress. This study indicates that uncontrollable social defeat stress is capable of shifting peripheral clocks in a time of day dependent and tissue specific manner. These shifts in peripheral clocks were smaller or absent after a single stress exposure and may therefore be the consequence of a cumulative chronic stress effect.


2021 ◽  
pp. 074873042110642
Author(s):  
Diane B. Boivin ◽  
Philippe Boudreau ◽  
Anastasi Kosmadopoulos

The various non-standard schedules required of shift workers force abrupt changes in the timing of sleep and light-dark exposure. These changes result in disturbances of the endogenous circadian system and its misalignment with the environment. Simulated night-shift experiments and field-based studies with shift workers both indicate that the circadian system is resistant to adaptation from a day- to a night-oriented schedule, as determined by a lack of substantial phase shifts over multiple days in centrally controlled rhythms, such as those of melatonin and cortisol. There is evidence that disruption of the circadian system caused by night-shift work results not only in a misalignment between the circadian system and the external light-dark cycle, but also in a state of internal desynchronization between various levels of the circadian system. This is the case between rhythms controlled by the central circadian pacemaker and clock genes expression in tissues such as peripheral blood mononuclear cells, hair follicle cells, and oral mucosa cells. The disruptive effects of atypical work schedules extend beyond the expression profile of canonical circadian clock genes and affects other transcripts of the human genome. In general, after several days of living at night, most rhythmic transcripts in the human genome remain adjusted to a day-oriented schedule, with dampened group amplitudes. In contrast to circadian clock genes and rhythmic transcripts, metabolomics studies revealed that most metabolites shift by several hours when working nights, thus leading to their misalignment with the circadian system. Altogether, these circadian and sleep-wake disturbances emphasize the all-encompassing impact of night-shift work, and can contribute to the increased risk of various medical conditions. Here, we review the latest scientific evidence regarding the effects of atypical work schedules on the circadian system, sleep and alertness of shift-working populations, and discuss their potential clinical impacts.


2021 ◽  
pp. 074873042110608
Author(s):  
Jonathan P. Riggle ◽  
Kenneth G. Onishi ◽  
Jharnae A. Love ◽  
Dana E. Beach ◽  
Irving Zucker ◽  
...  

Circadian rhythms are generated by interlocked transcriptional-translational feedback loops of circadian clock genes and their protein products. Mice homozygous for a functional deletion in the Period-2 gene ( Per2m/m mice) exhibit short free-running circadian periods and eventually lose behavioral circadian rhythmicity in constant darkness (DD). We investigated Per2m/m mice in DD for several months and identified a categorical sex difference in the dependence on Per2 for maintenance of circadian rhythms. Nearly all female Per2m/m mice became circadian arrhythmic in DD, whereas free-running rhythms persisted in 37% of males. Remarkably, with extended testing, Per2m/m mice did not remain arrhythmic in DD, but after varying intervals spontaneously recovered robust, free-running circadian rhythms, with periods shorter than those expressed prior to arrhythmia. Spontaneous recovery was strikingly sex-biased, occurring in 95% of females and 33% of males. Castration in adulthood resulted in male Per2m/m mice exhibiting female-like levels of arrhythmia in DD, but did not affect spontaneous recovery. The circadian pacemaker of many gonad-intact males, but not females, can persist in DD for long intervals without a functional PER2 protein; their circadian clocks may be in an unstable equilibrium, incapable of sustaining persistent coherent circadian organization, resulting in transient cycles of circadian organization and arrhythmia.


2021 ◽  
pp. 074873042110628
Author(s):  
Blanca Martin-Burgos ◽  
Wanqi Wang ◽  
Ivana William ◽  
Selma Tir ◽  
Innus Mohammad ◽  
...  

Circadian rhythms are driven by daily oscillations of gene expression. An important tool for studying cellular and tissue circadian rhythms is the use of a gene reporter, such as bioluminescence from the reporter gene luciferase controlled by a rhythmically expressed gene of interest. Here we describe methods that allow measurement of circadian bioluminescence from a freely moving mouse housed in a standard cage. Using a LumiCycle In Vivo (Actimetrics), we determined conditions that allow detection of circadian rhythms of bioluminescence from the PER2 reporter, PER2::LUC, in freely behaving mice. The LumiCycle In Vivo applies a background subtraction that corrects for effects of room temperature on photomultiplier tube (PMT) output. We tested delivery of d-luciferin via a subcutaneous minipump and in the drinking water. We demonstrate spikes in bioluminescence associated with drinking bouts. Further, we demonstrate that a synthetic luciferase substrate, CycLuc1, can support circadian rhythms of bioluminescence, even when delivered at a lower concentration than d-luciferin, and can support longer-term studies. A small difference in phase of the PER2::LUC bioluminescence rhythms, with females phase leading males, can be detected with this technique. We share our analysis scripts and suggestions for further improvements in this method. This approach will be straightforward to apply to mice with tissue-specific reporters, allowing insights into responses of specific peripheral clocks to perturbations such as environmental or pharmacological manipulations.


2021 ◽  
pp. 074873042110593
Author(s):  
Wei Wang ◽  
Peter Balfe ◽  
David W. Eyre ◽  
Sheila F. Lumley ◽  
Denise O’Donnell ◽  
...  

The COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a global crisis with unprecedented challenges for public health. Vaccinations against SARS-CoV-2 have slowed the incidence of new infections and reduced disease severity. As the time of day of vaccination has been reported to influence host immune responses to multiple pathogens, we quantified the influence of SARS-CoV-2 vaccination time, vaccine type, participant age, sex, and days post-vaccination on anti-Spike antibody responses in health care workers. The magnitude of the anti-Spike antibody response is associated with the time of day of vaccination, vaccine type, participant age, sex, and days post-vaccination. These results may be relevant for optimising SARS-CoV-2 vaccine efficacy.


2021 ◽  
pp. 074873042110582
Author(s):  
Matthew J. Hartsock ◽  
Helen K. Strnad ◽  
Robert L. Spencer

Work in recent years has provided strong evidence for the modulation of memory function and neuroplasticity mechanisms across circadian (daily), ultradian (shorter-than-daily), and infradian (longer-than-daily) timescales. Despite rapid progress, however, the field has yet to adopt a general framework to describe the overarching role of biological rhythms in memory. To this end, Iyer and colleagues introduced the term iterative metaplasticity, which they define as the “gating of receptivity to subsequent signals that repeats on a cyclic timebase.” The central concept is that the cyclic regulation of molecules involved in neuroplasticity may produce cycles in neuroplastic capacity—that is, the ability of neural cells to undergo activity-dependent change. Although Iyer and colleagues focus on the circadian timescale, we think their framework may be useful for understanding how biological rhythms influence memory more broadly. In this review, we provide examples and terminology to explain how the idea of iterative metaplasticity can be readily applied across circadian, ultradian, and infradian timescales. We suggest that iterative metaplasticity may not only support the temporal niching of neuroplasticity processes but also serve an essential role in the maintenance of memory function.


2021 ◽  
pp. 074873042110544
Author(s):  
Alaina C. Pfenning-Butterworth ◽  
Kristina Amato ◽  
Clayton E. Cressler

Circadian rhythms enable organisms to mediate their molecular and physiological processes with changes in their environment. Although feeding behavior directly affects within-organism processes, there are few examples of a circadian rhythm in this key behavior. Here, we show that Daphnia have a nocturnal circadian rhythm in feeding behavior that corresponds with their diel vertical migration (DVM), an important life history strategy for predator and UV avoidance. In addition, this feeding rhythm appears to be temperature compensated, which suggests that feeding behavior is robust to seasonal changes in water temperature. A circadian rhythm in feeding behavior can impact energetically demanding processes like metabolism and immunity, which may have drastic effects on susceptibility to disease, starvation risk, and ultimately, fitness.


Sign in / Sign up

Export Citation Format

Share Document