scholarly journals Directional selective neurons in the awake LGN: response properties and modulation by brain state

2014 ◽  
Vol 112 (2) ◽  
pp. 362-373 ◽  
Author(s):  
Xiaojuan Hei (黑晓娟) ◽  
Carl R. Stoelzel ◽  
Jun Zhuang (庄骏) ◽  
Yulia Bereshpolova ◽  
Joseph M. Huff ◽  
...  

Directionally selective (DS) neurons are found in the retina and lateral geniculate nucleus (LGN) of rabbits and rodents, and in rabbits, LGN DS cells project to primary visual cortex. Here, we compare visual response properties of LGN DS neurons with those of layer 4 simple cells, most of which show strong direction/orientation selectivity. These populations differed dramatically, suggesting that DS cells may not contribute significantly to the synthesis of simple receptive fields: 1) whereas the first harmonic component (F1)-to-mean firing rate (F0) ratios of LGN DS cells are strongly nonlinear, those of simple cells are strongly linear; 2) whereas LGN DS cells have overlapped ON/OFF subfields, simple cells have either a single ON or OFF subfield or two spatially separate subfields; and 3) whereas the preferred directions of LGN DS cells are closely tied to the four cardinal directions, the directional preferences of simple cells are more evenly distributed. We further show that directional selectivity in LGN DS neurons is strongly enhanced by alertness via two mechanisms, 1) an increase in responses to stimulation in the preferred direction, and 2) an enhanced suppression of responses to stimuli moving in the null direction. Finally, our simulations show that these two consequences of alertness could each serve, in a vector-based population code, to hasten the computation of stimulus direction when rabbits become alert.

2003 ◽  
Vol 89 (5) ◽  
pp. 2743-2759 ◽  
Author(s):  
Margaret S. Livingstone ◽  
Bevil R. Conway

We used two-dimensional (2-D) sparse noise to map simultaneous and sequential two-spot interactions in simple and complex direction-selective cells in macaque V1. Sequential-interaction maps for both simple and complex cells showed preferred-direction facilitation and null-direction suppression for same-contrast stimulus sequences and the reverse for inverting-contrast sequences, although the magnitudes of the interactions were weaker for the simple cells. Contrast-sign selectivity in complex cells indicates that direction-selective interactions in these cells must occur in antecedent simple cells or in simple-cell-like dendritic compartments. Our maps suggest that direction selectivity, and on andoff segregation perpendicular to the orientation axis, can occur prior to receptive-field elongation along the orientation axis. 2-D interaction maps for some complex cells showed elongated alternating facilitatory and suppressive interactions as predicted if their inputs were orientation-selective simple cells. The negative interactions, however, were less elongated than the positive interactions, and there was an inflection at the origin in the positive interactions, so the interactions were chevron-shaped rather than band-like. Other complex cells showed only two round interaction regions, one negative and one positive. Several explanations for the map shapes are considered, including the possibility that directional interactions are generated directly from unoriented inputs.


2003 ◽  
Vol 89 (2) ◽  
pp. 1003-1015 ◽  
Author(s):  
W. Martin Usrey ◽  
Michael P. Sceniak ◽  
Barbara Chapman

The ferret has become a model animal for studies exploring the development of the visual system. However, little is known about the receptive-field structure and response properties of neurons in the adult visual cortex of the ferret. We performed single-unit recordings from neurons in layer 4 of adult ferret primary visual cortex to determine the receptive-field structure and visual-response properties of individual neurons. In particular, we asked what is the spatiotemporal structure of receptive fields of layer 4 neurons and what is the orientation selectivity of layer 4 neurons? Receptive fields of layer 4 neurons were mapped using a white-noise stimulus; orientation selectivity was determined using drifting, sine-wave gratings. Our results show that most neurons (84%) within layer 4 are simple cells with elongated, spatially segregated,on and off subregions. These neurons are also selective for stimulus orientation; peaks in orientation-tuning curves have, on average, a half-width at half-maximum response of 21.5 ± 1.2° (mean ± SD). The remaining neurons in layer 4 (16%) lack orientation selectivity and have center/surround receptive fields. Although the organization of geniculate inputs to layer 4 differs substantially between ferret and cat, our results demonstrate that, like in the cat, most neurons in ferret layer 4 are orientation-selective simple cells.


1991 ◽  
Vol 66 (2) ◽  
pp. 505-529 ◽  
Author(s):  
R. C. Reid ◽  
R. E. Soodak ◽  
R. M. Shapley

1. Simple cells in cat striate cortex were studied with a number of stimulation paradigms to explore the extent to which linear mechanisms determine direction selectivity. For each paradigm, our aim was to predict the selectivity for the direction of moving stimuli given only the responses to stationary stimuli. We have found that the prediction robustly determines the direction and magnitude of the preferred response but overestimates the nonpreferred response. 2. The main paradigm consisted of comparing the responses of simple cells to contrast reversal sinusoidal gratings with their responses to drifting gratings (of the same orientation, contrast, and spatial and temporal frequencies) in both directions of motion. Although it is known that simple cells display spatiotemporally inseparable responses to contrast reversal gratings, this spatiotemporal inseparability is demonstrated here to predict a certain amount of direction selectivity under the assumption that simple cells sum their inputs linearly. 3. The linear prediction of the directional index (DI), a quantitative measure of the degree of direction selectivity, was compared with the measured DI obtained from the responses to drifting gratings. The median value of the ratio of the two was 0.30, indicating that there is a significant nonlinear component to direction selectivity. 4. The absolute magnitudes of the responses to gratings moving in both directions of motion were compared with the linear predictions as well. Whereas the preferred direction response showed only a slight amount of facilitation compared with the linear prediction, there was a significant amount of nonlinear suppression in the nonpreferred direction. 5. Spatiotemporal inseparability was demonstrated also with stationary temporally modulated bars. The time course of response to these bars was different for different positions in the receptive field. The degree of spatiotemporal inseparability measured with sinusoidally modulated bars agreed quantitatively with that measured in experiments with stationary gratings. 6. A linear prediction of the responses to drifting luminance borders was compared with the actual responses. As with the grating experiments, the prediction was qualitatively accurate, giving the correct preferred direction but underestimating the magnitude of direction selectivity observed.(ABSTRACT TRUNCATED AT 400 WORDS)


1981 ◽  
Vol 45 (3) ◽  
pp. 397-416 ◽  
Author(s):  
J. F. Baker ◽  
S. E. Petersen ◽  
W. T. Newsome ◽  
J. M. Allman

1. The response properties of 354 single neurons in the medial (M), dorsomedial (DM), dorsolateral (DL), and middle temporal (MT) visual areas were studied quantitatively with bar, spot, and random-dot stimuli in chronically implanted owl monkeys with fixed gaze. 2. A directionality index was computed to compare the responses to stimuli in the optimal direction with the responses to the opposing direction of movement. The greater the difference between opposing directions, the higher the index. MT cells had much higher direction indices to moving bars than cells in DL, DM, and M. 3. A tuning index was computed for each cell to compare the responses to bars moving in the optimal direction, or flashed in the optimal orientation, with the responses in other directions or orientations within +/- 90 degrees. Cells in all four areas were more sharply tuned to the orientation of stationary flashed bars than to moving bars, although a few cells (9/92( were unresponsive in the absence of movement. DM cells tended to be more sharply tuned to moving bars than cells in the other areas. 4. Directionality in DM, DL, and MT was relatively unaffected by the use of single-spot stimuli instead of bars; tuning in all four areas was broader to spots than bars. 5. Moving arrays of randomly spaced spots were more strongly excitatory than bar stimuli for many neurons in MT (16/31 cells). These random-dot stimuli were also effective in M, but evoked no response or weak responses from most cells in DM and DL. 6. The best velocities of movement were usually in the range of 10-100 degrees/s, although a few cells (22/227), primarily in MT (14/69 cells), preferred higher velocities. 7. Receptive fields of neurons in all four areas were much larger than striate receptive fields. Eccentricity was positively correlated with receptive-field size (r = 0.62), but was not correlated with directionality index, tuning index, or best velocity. 8. The results support the hypothesis that there are specializations of function among the cortical visual areas.


1988 ◽  
Vol 60 (6) ◽  
pp. 2037-2054 ◽  
Author(s):  
R. E. Soodak ◽  
J. I. Simpson

1. The response properties of accessory optic system (AOS) neurons were assessed using single-unit extracellular recording from each of the three AOS terminal nuclei [medial, lateral, and dorsal terminal nuclei (MTN, LTN, and DTN)] in the anesthetized rabbit. 2. AOS neurons had large, monocular (contralateral) receptive fields (tens of degrees on a side) and exhibited a pronounced selectivity to the speed and direction of movement of large, textured patterns. The greatest responses occurred at slow speeds on the order of 0.5 degrees/s. 3. MTN and LTN neurons responded best to movement in near vertical directions. However, the stimulus directions corresponding to the greatest excitation and the greatest inhibition both had a posterior component and, thus, the preferred excitatory and inhibitory directions were not opposite each other. DTN neurons responded most strongly to horizontal movement and were excited by temporal to nasal movement. 4. AOS neurons were unresponsive to natural vestibular stimulation presented as sinusoidal oscillations of the rabbit about the yaw, pitch, and roll axes. 5. The response properties of AOS neurons are remarkably similar to those of the ON, direction-selective ganglion cells of the rabbit retina, and therefore this class of ganglion cell is most likely the predominant, if not the only, direct retinal input to the AOS. The local direction-selective properties of AOS neurons can be accounted for by combining the tuning curves of ON, direction-selective ganglion cells in a simple manner. 6. The low speed preference of AOS neurons, along with their large receptive fields suggests that they are suited to complement the vestibular system in detecting self-motion.


1993 ◽  
Vol 69 (3) ◽  
pp. 902-914 ◽  
Author(s):  
C. L. Colby ◽  
J. R. Duhamel ◽  
M. E. Goldberg

1. The middle temporal area (MT) projects to the intraparietal sulcus in the macaque monkey. We describe here a discrete area in the depths of the intraparietal sulcus containing neurons with response properties similar to those reported for area MT. We call this area the physiologically defined ventral intraparietal area, or VIP. In the present study we recorded from single neurons in VIP of alert monkeys and studied their visual and oculomotor response properties. 2. Area VIP has a high degree of selectivity for the direction of a moving stimulus. In our sample 72/88 (80%) neurons responded at least twice as well to a stimulus moving in the preferred direction compared with a stimulus moving in the null direction. The average response to stimuli moving in the preferred direction was 9.5 times as strong as the response to stimuli moving in the opposite direction, as compared with 10.9 times as strong for neurons in area MT. 3. Many neurons were also selective for speed of stimulus motion. Quantitative data from 25 neurons indicated that the distribution of preferred speeds ranged from 10 to 320 degrees/s. The degree of speed tuning was on average twice as broad as that reported for area MT. 4. Some neurons (22/41) were selective for the distance at which a stimulus was presented, preferring a stimulus of equivalent visual angle and luminance presented near (within 20 cm) or very near (within 5 cm) the face. These neurons maintained their preference for near stimuli when tested monocularly, suggesting that visual cues other than disparity can support this response. These neurons typically could not be driven by small spots presented on the tangent screen (at 57 cm). 5. Some VIP neurons responded best to a stimulus moving toward the animal. The absolute direction of visual motion was not as important for these cells as the trajectory of the stimulus: the best stimulus was one moving toward a particular point on the face from any direction. 6. VIP neurons were not active in relation to saccadic eye movements. Some neurons (10/17) were active during smooth pursuit of a small target. 7. The predominance of direction and speed selectivity in area VIP suggests that it, like other visual areas in the dorsal stream, may be involved in the analysis of visual motion.


1993 ◽  
Vol 69 (4) ◽  
pp. 1314-1322 ◽  
Author(s):  
T. X. Fan ◽  
A. F. Rosenberg ◽  
M. Ariel

1. Single units were recorded extracellularly in the turtle's cerebellar cortex from an isolated brain preparation during visual stimulation. Only a small fraction of the isolated units responded to visual stimuli. For these visually responsive units, the most effective visual stimulus was a moving check pattern that covered the entire surface of the retinal eyecup. The visually responsive units had little or no spontaneous spike activity, nor were they driven by flashes of diffuse light or stationary patterns. 2. All the visually responsive units were direction sensitive and were driven exclusively by the contralateral eye. This direction tuning was well fit by a limacon model (mean correlation coefficient, 0.89). The distribution of the entire sample indicates a slight preponderance of upward preferred directions. 3. The direction tuning of these cerebellar units was independent of stimulus contrast or the pattern's configuration (such as checkerboards or random check or dot patterns). In the preferred direction, a unit's spike frequency increased monotonically as a function of stimulus velocity until approximately 10 degrees/s, but remained direction sensitive (relative to the opposite direction) at speeds as fast as 100 degrees/s. 4. In some experiments the ventrocaudal brain stem was transected in the frontal plane just caudal to the cerebellar peduncles. Although this lesion presumably removes climbing fiber input from the inferior olivary nuclei, the visual-response properties in the cerebellar cortex were unaffected. 5. The response properties of these units indicate that they encode retinal slip information in the cerebellum.(ABSTRACT TRUNCATED AT 250 WORDS)


2001 ◽  
Vol 85 (5) ◽  
pp. 2111-2129 ◽  
Author(s):  
Jonathan B. Levitt ◽  
Robert A. Schumer ◽  
S. Murray Sherman ◽  
Peter D. Spear ◽  
J. Anthony Movshon

It is now well appreciated that parallel retino-geniculo-cortical pathways exist in the monkey as in the cat, the species in which parallel visual pathways were first and most thoroughly documented. What remains unclear is precisely how many separate pathways pass through the parvo- and magnocellular divisions of the macaque lateral geniculate nucleus (LGN), what relationships—homologous or otherwise—these pathways have to the cat's X, Y, and W pathways, and whether these are affected by visual deprivation. To address these issues of classification and trans-species comparison, we used achromatic stimuli to obtain an extensive set of quantitative measurements of receptive field properties in the parvo- and magnocellular laminae of the LGN of nine macaque monkeys: four normally reared and five monocularly deprived of vision by lid suture near the time of birth. In agreement with previous studies, we find that on average magnocellular neurons differ from parvocellular neurons by having shorter response latencies to optic chiasm stimulation, greater sensitivity to luminance contrast, and better temporal resolution. Magnocellular laminae are also distinguished by containing neurons that summate luminance over their receptive fields nonlinearly (Y cells) and whose temporal response phases decrease with increasing stimulus contrast (indicative of a contrast gain control mechanism). We found little evidence for major differences between magno- and parvocellular neurons on the basis of most spatial parameters except that at any eccentricity, the neurons with the smallest receptive field centers tended to be parvocellular. All parameters were distributed unimodally and continuously through the parvo- and magnocellular populations, giving no indications of subpopulations within each division. Monocular deprivation led to clear anatomical effects: cells in deprived-eye laminae were pale and shrunken compared with those in nondeprived eye laminae, and Cat-301 immunoreactivity in deprived laminae was essentially uniformly abolished. However, deprivation had only subtle effects on the response properties of LGN neurons. Neurons driven by the deprived eye in both magno- and parvocellular laminae had lower nonlinearity indices (i.e., summed signals across their receptive fields more linearly) and were somewhat less responsive. In magnocellular laminae driven by the deprived eye, neuronal response latencies to stimulation of the optic chiasm were slightly shorter than those in the nondeprived laminae, and receptive field surrounds were a bit stronger. No other response parameters were affected by deprivation, and there was no evidence for loss of a specific cell class as in the cat.


2005 ◽  
Vol 94 (1) ◽  
pp. 26-32 ◽  
Author(s):  
Jose-Manuel Alonso ◽  
Harvey A. Swadlow

A persistent and fundamental question in sensory cortical physiology concerns the manner in which receptive fields of layer-4 neurons are synthesized from their thalamic inputs. According to a hierarchical model proposed more than 40 years ago, simple receptive fields in layer 4 of primary visual cortex originate from the convergence of highly specific thalamocortical inputs (e.g., geniculate inputs with on-center receptive fields overlap the on subregions of layer 4 simple cells). Here, we summarize studies in the visual cortex that provide support for this high specificity of thalamic input to visual cortical simple cells. In addition, we review studies of GABAergic interneurons in the somatosensory “barrel” cortex with receptive fields that are generated by a very different mechanism: the nonspecific convergence of thalamic inputs with different response properties. We hypothesize that these 2 modes of thalamocortical connectivity onto subpopulations of excitatory and inhibitory neurons constitute a general feature of sensory neocortex and account for much of the diversity seen in layer-4 receptive fields.


1997 ◽  
Vol 78 (5) ◽  
pp. 2732-2741 ◽  
Author(s):  
M. T. Wallace ◽  
J. G. McHaffie ◽  
B. E. Stein

Wallace M. T., J. G. McHaffie, and B. E. Stein. Visual response properties and visuotopic representation in the newborn monkey superior colliculus. J. Neurophysiol. 78: 2732–2741, 1997. Visually responsive neurons were recorded in the superior colliculus (SC) of the newborn rhesus monkey. The receptive fields of these neurons were larger than those in the adult, but already were organized into a well-ordered map of visual space that was very much like that seen in mature animals. This included a marked expansion of the representation of the central 10° of the visual field and a systematic foveal to peripheral increase in receptive field size. Although newborn SC neurons had longer response latencies than did their adult counterparts, they responded vigorously to visual stimuli and exhibited many visual response properties that are characteristic of the adult. These included surround inhibition, within-field spatial summation, within-field spatial inhibition, binocularity, and an adult-like ocular dominance distribution. As in the adult, SC neurons in the newborn preferred a moving visual stimulus and had adult-like selectivities for stimulus speed. The developmentally advanced state of the functional circuitry of the newborn monkey SC contrasts with the comparative immaturity of neurons in its visual cortex. It also contrasts with observations on the state of maturation of the newborn SC in other developmental models (e.g., cat). The observation that extensive visual experience is not necessary for the development of many adult-like SC response properties in the monkey SC may help explain the substantial visual capabilities shown by primates soon after birth.


Sign in / Sign up

Export Citation Format

Share Document