­­Differential contribution of the subthreshold operating currents IT, Ih and IKir to the resonance of thalamocortical neurons

Author(s):  
Angela Isabel Tissone ◽  
Varinia Beatriz Vidal ◽  
Marcela Silvia Nadal ◽  
German Mato ◽  
Yimy Amarillo

Membrane potential oscillations of thalamocortical (TC) neurons are believed to be involved in the generation and maintenance of brain rhythms that underlie global physiological and pathological brain states. These membrane potential oscillations depend on the synaptic interactions of TC neurons and their intrinsic electrical properties. These oscillations may be also shaped by increased output responses at a preferred frequency, known as intrinsic neuronal resonance. Here we combine electrophysiological recordings in mouse brain slices, modern pharmacological tools, dynamic clamp and computational modeling to study the ionic mechanisms that generate and modulate TC neuron resonance. We confirm findings of pioneering studies showing that most TC neurons display resonance which results from the interaction of the slow inactivation of the low threshold calcium current IT with the passive properties of the membrane. We also show that the hyperpolarization activated cationic current Ih is not involved in the generation of resonance, instead, it plays a minor role in the stabilization of TC neuron impedance magnitude due to its large contribution to the steady conductance. More importantly, we also demonstrate that TC neuron resonance is amplified by the inward rectifier potassium current IKir by a mechanism that hinges on its strong voltage dependent inward rectification (i.e. a negative slope conductance region) Accumulating evidence indicate that the ion channels that control the oscillatory behavior of TC neurons participate in pathophysiological processes. Results presented here points to IKir as a new potential target for therapeutic intervention.

1993 ◽  
Vol 70 (1) ◽  
pp. 144-157 ◽  
Author(s):  
R. Klink ◽  
A. Alonso

1. Layer II of the medial entorhinal cortex is composed of two electrophysiologically and morphologically distinct types of projection neurons: stellate cells (SCs), which are distinguished by rhythmic subthreshold oscillatory activity, and non-SCs. The ionic mechanisms underlying their differential electroresponsiveness, particularly in the subthreshold range of membrane potentials, were investigated in an "in vitro" slice preparation. 2. In both SCs and non-SCs, the apparent membrane input resistance was markedly voltage dependent, respectively decreasing or increasing at hyperpolarized or subthreshold depolarized potential levels. Thus the neurons displayed inward rectification in the hyperpolarizing and depolarizing range. 3. In the depolarizing range, inward rectification was blocked by tetrodotoxin (TTX, 1 microM) in both types of neurons and thus shown to depend on the presence of a persistent low-threshold Na+ conductance (gNap). However, in the presence of TTX, pronounced outward rectification became manifest in the subthreshold depolarizing range of membrane potentials (positive to -60 mV) in the SCs but not in the non-SCs. 4. The rhythmic subthreshold membrane potential oscillations that were present only in the SCs were abolished by TTX and not by Ca2+ conductance block with Cd2+ or Co2+. Subthreshold oscillations thus rely on the activation of voltage-gated Na+, and not Ca2+, conductances. The Ca2+ conductance block also had no effect on the subthreshold outward rectification. 5. Prominent time-dependent inward rectification in the hyperpolarizing range in the SCs persisted after Na(+)- and Ca2+ conductance block. This rectification was not affected by Ba2+ (1 mM), but was blocked by Cs+ (1-4 mM). Therefore, it is most probably generated by a hyperpolarization-activated cationic current (Q-like current). However, the Q-like current appears to play no major role in the generation of subthreshold rhythmic membrane potential oscillations, because these persisted in the presence of Cs+. 6. On the other hand, in the SCs, the fast, sustained, outward rectification that strongly developed (after Na+ conductance block) at the oscillatory voltage level was not affected by Cs+ but was blocked by Ba2+ (1 mM). Barium was also effective in blocking the subthreshold membrane potential oscillations. 7. In the non-SCs, which do not generate subthreshold rhythmic membrane potential oscillations or manifest subthreshold outward rectification in TTX, Ca2+ conductance block abolished spike repolarization and caused the development of long-lasting Na(+)-dependent plateau potentials at a high suprathreshold voltage level. At this level, where prominent delayed rectification is present, the Na+ plateaus sustained rhythmic membrane potential oscillations.(ABSTRACT TRUNCATED AT 400 WORDS)


2008 ◽  
Vol 100 (5) ◽  
pp. 2746-2756 ◽  
Author(s):  
Stephen D. Glasgow ◽  
C. Andrew Chapman

Ionic conductances that generate membrane potential oscillations in neurons of layer II of the parasubiculum were studied using whole cell current-clamp recordings in horizontal slices from the rat brain. Blockade of ionotropic glutamate and GABA synaptic transmission did not reduce the power of the oscillations, indicating that oscillations are not dependent on synaptic inputs. Oscillations were eliminated when cells were hyperpolarized 6–10 mV below spike threshold, indicating that they are mediated by voltage-dependent conductances. Application of TTX completely eliminated oscillations, suggesting that Na+ currents are required for the generation of the oscillations. Oscillations were not reduced by blocking Ca2+ currents with Cd2+ or Ca2+-free artificial cerebrospinal fluid, or by blocking K+ conductances with either 50 μM or 5 mM 4-aminopyridine (4-AP), 30 mM tetraethylammonium (TEA), or Ba2+(1–2 mM). Oscillations also persisted during blockade of the muscarinic-dependent K+ current, IM, using the selective antagonist XE-991 (10 μM). However, oscillations were significantly attenuated by blocking the hyperpolarization-activated cationic current Ih with Cs+ and were almost completely blocked by the more potent Ih blocker ZD7288 (100 μM). Intrinsic membrane potential oscillations in neurons of layer II of the parasubiculum are therefore likely driven by an interaction between an inward persistent Na+ current and time-dependent deactivation of Ih. These voltage-dependent conductances provide a mechanism for the generation of membrane potential oscillations that can help support rhythmic network activity within the parasubiculum during theta-related behaviors.


2007 ◽  
Vol 97 (6) ◽  
pp. 3868-3879 ◽  
Author(s):  
Stephen D. Glasgow ◽  
C. Andrew Chapman

The parasubiculum is a major component of the hippocampal formation that receives inputs from the CA1 region, anterior thalamus, and medial septum and that projects primarily to layer II of the entorhinal cortex. Hippocampal theta-frequency (4–12 Hz) electroencephalographic (EEG) activity has been correlated with sensorimotor integration, spatial navigation, and memory functions. The present study was aimed at determining if theta is also generated locally within the parasubiculum versus volume conducted from adjacent structures. In urethan-anesthetized rats, the phase-reversal of theta activity between superficial and deep layers of the parasubiculum was demonstrated using differential recordings from movable bipolar electrodes that eliminate the influence of volume-conducted activity. Parasubicular theta was abolished by atropine, and was in phase with theta in stratum radiatum/lacunosum-moleculare of the CA1 region. Whole cell current-clamp recordings in brain slices were then used to determine if parasubicular theta may be generated in part by membrane potential oscillations in layer II neurons. Membrane potential oscillations occurred in most layer II neurons, including four putative interneurons, when cells were held at near-threshold voltages using current injection. The frequency of oscillations increased from 3.2 to 6.1 Hz when bath temperature was raised from 22 to 32°C, and oscillations persisted in the presence of blockers of fast ionotropic glutamatergic and GABAergic synaptic transmission. Oscillations are therefore likely generated by intrinsic, voltage-dependent ionic conductances. These results indicate that theta field activity is generated locally within the parasubiculum and that intrinsic membrane potential oscillations, synchronized by local inhibitory inputs, may contribute to the generation of this activity.


1997 ◽  
Vol 63 (2-3) ◽  
pp. 221-239 ◽  
Author(s):  
Marko Marhl ◽  
Stefan Schuster ◽  
Milan Brumen ◽  
Reinhart Heinrich

1999 ◽  
Vol 81 (3) ◽  
pp. 1296-1307 ◽  
Author(s):  
C. Andrew Chapman ◽  
Jean-Claude Lacaille

Intrinsic theta-frequency membrane potential oscillations in hippocampal CA1 interneurons of stratum lacunosum-moleculare. The ionic conductances underlying membrane potential oscillations of hippocampal CA1 interneurons located near the border between stratum lacunosum-moleculare and stratum radiatum (LM) were investigated using whole cell current-clamp recordings in rat hippocampal slices. At 22°C, when LM cells were depolarized near spike threshold by current injection, 91% of cells displayed 2–5 Hz oscillations in membrane potential, which caused rhythmic firing. At 32°C, mean oscillation frequency increased to 7.1 Hz. Oscillations were voltage dependent and were eliminated by hyperpolarizing cells 6–10 mV below spike threshold. Blockade of ionotropic glutamate and GABA synaptic transmission did not affect oscillations, indicating that they were not synaptically driven. Oscillations were eliminated by tetrodotoxin, suggesting that Na+ currents generate the depolarizing phase of oscillations. Oscillations were not affected by blocking Ca2+ currents with Cd2+ or Ca2+-free ACSF or by blocking the hyperpolarization-activated current ( I h) with Cs+. Both Ba2+ and a low concentration of 4-aminopyridine (4-AP) reduced oscillations but TEA did not. Theta-frequency oscillations were much less common in interneurons located in stratum oriens. Intrinsic membrane potential oscillations in LM cells of the CA1 region thus involve an interplay between inward Na+ currents and outward K+ currents sensitive to Ba2+ and 4-AP. These oscillations may participate in rhythmic inhibition and synchronization of pyramidal neurons during theta activity in vivo.


1990 ◽  
Vol 258 (3) ◽  
pp. G484-G491 ◽  
Author(s):  
P. J. Sabourin ◽  
Y. J. Kingma ◽  
K. L. Bowes

Electrical and mechanical interactions between the two smooth muscle layers of canine colon have been studied using a dual sucrose gap apparatus. Muscle samples were dissected into an L-shape, with one leg cut in the circular direction and the other cut in the longitudinal direction. Longitudinal muscle was removed from the circular leg and circular muscle was removed from the longitudinal leg. The bend of the L contained both layers. The activity of the two layers was studied simultaneously under basal conditions, after stimulation by neostigmine and carbachol, and in the presence of tetrodotoxin. Interactions were more common after stimulation and were marked by modification of one layer's mechanical and electrical activity during increased activity in the other layer. Two patterns were commonly observed. First, during a burst of membrane potential oscillations and spike potentials in the longitudinal layer, slow waves in the circular layer developed spike potentials and some slow waves were also prolonged. Second, during a slow-wave cycle in the circular layer, the amplitude of membrane potential oscillations in the longitudinal layer was increased with an associated increase in the incidence of spike potentials. These interactions were associated with contractions of increased strength, which were similar in both layers. All interactions continued after nerve-conduction blockade by tetrodotoxin.


Sign in / Sign up

Export Citation Format

Share Document