large contribution
Recently Published Documents


TOTAL DOCUMENTS

578
(FIVE YEARS 259)

H-INDEX

44
(FIVE YEARS 5)

2022 ◽  
Author(s):  
Yang Liu ◽  
Ting-Ting Huang ◽  
Xi Zheng

AbstractAccelerated urbanization and population growth lead to the fragmentation of urban green space and loss of biodiversity. There are few studies on the integration of structural and functional connectivity to solve this problem. Our study aims to draw up a methodology to synthesize two methods of connectivity evaluation, accordingly, to construct an urban green infrastructure (UGI) network which is of great significance to maintain the stability of the urban ecosystem. Taking Beijing as a study area, we first used Morphological Spatial Pattern Analysis (MSPA) to identify the source patches, then combined with the graph theory-based landscape metrics to discuss the effect of different diffusion distances on the regional landscape connectivity and classify the importance level of the source patches. Finally, we used both least-cost path (LCP) and circuit theory to construct network and identify pinch areas in corridors for network optimization. The results show that (1) the landscape connectivity of the study area is obviously polarized. Source patches in mountain and hilly areas have good ecological bases and large areas, and the density of corridors is relatively high, which makes a large contribution to the overall landscape connectivity; Source patches in plain areas are severely fragmented, and there are only a small number of potential corridors connecting urban areas and suburban areas. (2) The UGI network is composed of 70 source patches and 148 potential corridors. The diffusion distance that is most beneficial to improve landscape connectivity is 20–25 km. (3) 6 pinch areas that are of great significance for improving the connectivity of the landscape present the coexistence of high migration resistance and large optimization potential, and urgently need to be restored first. This study provides a method to combine the structural and the functional analysis to construct a UGI network and formulate more scientifical protection strategies for planning departments.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Hideki Hashimoto ◽  
Yohei Onodera ◽  
Shuta Tahara ◽  
Shinji Kohara ◽  
Koji Yazawa ◽  
...  

AbstractThe fabrication of novel oxide glass is a challenging topic in glass science. Alumina (Al2O3) glass cannot be fabricated by a conventional melt–quenching method, since Al2O3 is not a glass former. We found that amorphous Al2O3 synthesized by the electrochemical anodization of aluminum metal shows a glass transition. The neutron diffraction pattern of the glass exhibits an extremely sharp diffraction peak owing to the significantly dense packing of oxygen atoms. Structural modeling based on X-ray/neutron diffraction and NMR data suggests that the average Al–O coordination number is 4.66 and confirms the formation of OAl3 triclusters associated with the large contribution of edge-sharing Al–O polyhedra. The formation of edge-sharing AlO5 and AlO6 polyhedra is completely outside of the corner-sharing tetrahedra motif in Zachariasen’s conventional glass formation concept. We show that the electrochemical anodization method leads to a new path for fabricating novel single-component oxide glasses.


2022 ◽  
Author(s):  
Shuyue Wang ◽  
Fan Zhang ◽  
Peiyu Huang ◽  
Hui Hong ◽  
Yeerfan Jiaerken ◽  
...  

White matter hyperintensities (WMH) are a typical feature of cerebral small vessel disease (CSVD). This condition contributes to about 50% of dementias worldwide, a massive health burden in aging. Microstructural alterations in the deep white matter (DWM) have been widely examined in CSVD. However, little is known about abnormalities in the superficial white matter (SWM) and their relevance for processing speed, the main cognitive deficit in CSVD. In this paper, 141 patients with CSVD were studied. Processing speed was assessed by the completion time of the Trail Making Test Part A. White matter abnormalities were assessed by WMH burden (lesion volume on T2-FLAIR) and diffusion MRI, including DTI and free-water (FW) imaging microstructure measures. The results of our study indicate that the superficial white matter may play a particularly important role in cognitive decline in CSVD. SWM imaging measures resulted in a large contribution to processing speed, despite a relatively small WMH burden in the SWM. SWM FW had the strongest association with processing speed among all imaging markers and, unlike the other diffusion MRI measures, significantly increased between two patient subgroups with the lowest WMH burdens (possibly representing early stages of disease). When comparing two patient subgroups with the highest WMH burdens, the involvement of WMH in the SWM was accompanied by significant differences in processing speed and white matter microstructure. Given significant effects of WMH volume and regional FW on processing speed, we performed a mediation analysis. SWM FW was found to fully mediate the association between WMH volume and processing speed, while no mediation effect of DWM FW was observed. Overall, our findings identify SWM abnormalities in CSVD and suggest that the SWM has an important contribution to processing speed. Results indicate that FW in the SWM is a sensitive marker of microstructural changes associated with cognition in CSVD. This study extends the current understanding of CSVD-related dysfunction and suggests that the SWM, as an understudied region, can be a potential target for monitoring pathophysiological processes in future research.


2022 ◽  
pp. 1-12
Author(s):  
Fouziyeh Mollazehi

Nanocatalysts, as a part of nanotechnology, have been seen very useful for various fileds of applications capturing a large contribution of the world market. Indeed, several unsolved issues of catalysts have been reconsidered by employing the new nanocatalysts including single core metal atoms and ions with surrounding holes. Moreover, it was expected that the future of catalytic reactions, especially those organic ones, will deal with the nanocatalyst applications. To this aim, the features of catalytic nanoparticles and magnetic nanocatalysts regarding evaluation of their advantages and applications in organic reactions were investigated in this work. Developments of catalytic nanoparticles and magnetic nanocatalysts were discussed in this work regarding the novel applications of such materials at the nanoscale for approaching advantageous features. Increased availability, activity, and stability are very important for applications of the catalysts in various organic reactions. Therefore, it is a must to discuss features of such nanocatalytic systems to provide more information about their advantages and even disadvantages of their applications.


2021 ◽  
Author(s):  
Rodinei F Pegoraro ◽  
Ivo R Silva ◽  
Ivan F Souza ◽  
Roberto F Novais ◽  
Nairam F Barros ◽  
...  

Abstract The extent to which the C sink strength of eucalypt plantations can be affected by coppicing or replanting remains unclear. To address this issue, we evaluated variations in C stocks under coppiced or replanted eucalypt stands formed by clones or seedlings. For each field assessment (0 [T0], 2.5, 3.5, 4.5, 5.5 and 7.0 years [at harvest]), tree biomass, litterfall, and soil C stocks (0–120 cm depth) were determined. At harvest, debarked stemwood productivity was similar under coppice or replanting, about 50.0 Mg C ha–1. Generally, coppiced stands favored subsoil C storage (40–100 cm), whereas replanted stands favored soil C accrual in topsoil (0–20 cm), depending on the genetic material. Relative to T0, soil C increased about 2.14, 1.91, and 1.84 Mg C ha–1 yr–1 under coppice, replanting with seedlings and clones, respectively. Coarse root biomass under these stands were about 17.3, 13.4, and 9.5 Mg C ha–1, respectively, equivalent to 50% of total harvest residues. Hence, inputs from coarse roots could represent a large contribution to soil C over multiple rotations under coppiced or replanted stands. Otherwise, short-term C losses can be high where stumps and coarse roots are harvested, especially following successive coppice cycles. Study Implications: Our findings have important implications for forest managers growing eucalypt plantations aiming to maximize C accumulation. Both coppiced and replanted stands can fix up to 50 Mg C ha−1 only in debarked stemwood over 7 years, with a comparatively higher C storage in coarse roots under coppice. Despite the increasing demand for forest residues in bioenergy production, harvesting stumps and coarse roots should be avoided, especially upon replanting eucalypt stands after successive coppice cycles.


Author(s):  
Sergii Karnaukh ◽  
Igramotdin Aliiev ◽  
Viktor Matviychuk ◽  
Liubov Tahan

A large contribution to the final cost of machine-building products is made by the efficiency of blank production, in which a waste-free shear cut is used. The most promising for the implementation of the method of shear cutting are dies with a differentiated clamping of rolled products. The aim of the work is to develop a new die design with a differentiated clamping of rolled products with high technical and economic characteristics and recommendations for the design of such equipment. On the basis of the developed graph of constructions of dies with a differentiated clamping of rolled products, design features have been identified, which made it possible to create a new die design. Compared with the known structures, in the stamp of the DSEA structure, the transverse dimensions and weight are reduced by an average of 25%, and the height of the open stamped space – by 10%. In the process of dividing in the vertical plane, a constant position of the rolling axis is ensured. The transfer of force to the clamp through the rolling is excluded. The stamp has high rigidity. The stamps of the DSEA design have been introduced at the Odessa PJSC "Stroygidravlika". The economic effect of the implementation was 100000 UAH. Acceptance test results showed that the dies of the new design are efficient and reliable in operation. The quality of the cut workpieces corresponds to the quality indicators of the workpieces cut on modern similar equipment. On the basis of theoretical analysis, experimental studies and operating experience of dies with differential clamping of rolled products, known and formulated new recommendations for the design of such dies. The main ones are: it is necessary to provide a differentiated clamping of rolled products on both sides of the separation plane, subject to the condition that the clamping force should be one and a half times greater than the cutting force; the die body is preferably box-shaped to compensate for thrust forces and torsional moments of forces; the power parts of the stamp must be made in a closed form with stiffening ribs to ensure strength under cyclic stress conditions.


Processes ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 2287
Author(s):  
Tina Lešić ◽  
Nada Vahčić ◽  
Ivica Kos ◽  
Manuela Zadravec ◽  
Dragan Milićević ◽  
...  

This study aimed to identify surface mould species overgrowing the Croatian protected meat products “Istarski pršut” and “Dalmatinski pršut” and their effect on sensory properties. Dry-cured hams were produced in 2018/2019 and obtained from annual fairs. The predominant surface species found on “Dalmatinski pršut” were Aspergillus chevalieri, Penicillium citrinum and Aspergillus cibarius, whereas those overgrowing “Istarski pršut” were Aspergillus proliferans, P. citrinum and Penicillium salamii. The results show species diversity, higher presence, and greater variety of Aspergillus species in “Dalmatinski pršut” in comparison to “Istarski pršut”, and significant variations in 9 of 20 sensory attributes. Principal component analysis revealed a clear distinction between the two, and a large contribution of P. salamii and Penicillium bialowienzense to one principal component. The texture traits, smoky odour, muscle and subcutaneous fatty tissue colour, and mould species found are valuable for product characterisation. The results also indicate that mould species may be responsible for some sensory traits, such as tenderness, juiciness, and lesser freshness.


2021 ◽  
Vol 118 (52) ◽  
pp. e2109628118
Author(s):  
Ilann Bourgeois ◽  
Jeff Peischl ◽  
J. Andrew Neuman ◽  
Steven S. Brown ◽  
Chelsea R. Thompson ◽  
...  

Ozone is the third most important anthropogenic greenhouse gas after carbon dioxide and methane but has a larger uncertainty in its radiative forcing, in part because of uncertainty in the source characteristics of ozone precursors, nitrogen oxides, and volatile organic carbon that directly affect ozone formation chemistry. Tropospheric ozone also negatively affects human and ecosystem health. Biomass burning (BB) and urban emissions are significant but uncertain sources of ozone precursors. Here, we report global-scale, in situ airborne measurements of ozone and precursor source tracers from the NASA Atmospheric Tomography mission. Measurements from the remote troposphere showed that tropospheric ozone is regularly enhanced above background in polluted air masses in all regions of the globe. Ozone enhancements in air with high BB and urban emission tracers (2.1 to 23.8 ppbv [parts per billion by volume]) were generally similar to those in BB-influenced air (2.2 to 21.0 ppbv) but larger than those in urban-influenced air (−7.7 to 6.9 ppbv). Ozone attributed to BB was 2 to 10 times higher than that from urban sources in the Southern Hemisphere and the tropical Atlantic and roughly equal to that from urban sources in the Northern Hemisphere and the tropical Pacific. Three independent global chemical transport models systematically underpredict the observed influence of BB on tropospheric ozone. Potential reasons include uncertainties in modeled BB injection heights and emission inventories, export efficiency of BB emissions to the free troposphere, and chemical mechanisms of ozone production in smoke. Accurately accounting for intermittent but large and widespread BB emissions is required to understand the global tropospheric ozone burden.


Author(s):  
Sanjeev Dasari ◽  
August Andersson ◽  
Maria E. Popa ◽  
Thomas Röckmann ◽  
Henry Holmstrand ◽  
...  

2021 ◽  
Author(s):  
Buqing Xu ◽  
Gan Zhang ◽  
Örjan Gustafsson ◽  
Kimitaka Kawamura ◽  
Jun Lin ◽  
...  

Abstract Incomplete understanding of the sources of secondary organic aerosol (SOA) leads to large uncertainty in both air quality management and in climate change assessment. Chemical reactions occurring in the atmospheric aqueous phase represent an important source of SOA mass, yet, the effects of anthropogenic emissions on the aqueous SOA (aqSOA) are not well constrained. Here we use compound-specific dual-carbon isotopic fingerprints (δ13C and Δ14C) of dominant aqSOA molecules, such as oxalic acid, to track the precursor sources and formation mechanisms of aqSOA. Substantial stable carbon isotope fractionation of aqSOA molecules provides robust evidence for extensive aqueous-phase processing. Contrary to the paradigm that these aqSOA compounds are largely biogenic, radiocarbon-based source apportionments show that fossil precursors produced over one-half of the aqSOA molecules. Large fractions of fossil-derived aqSOA contribute substantially to the total water-soluble organic aerosol load and hence impact projections of both air quality and anthropogenic radiative forcing. Our findings reveal the importance of fossil emissions for aqSOA with effects on climate and air quality.


Sign in / Sign up

Export Citation Format

Share Document