scholarly journals Potential Role of Medullary Raphe-Spinal Neurons in Cutaneous Vasoconstriction: An In Vivo Electrophysiological Study

2002 ◽  
Vol 87 (2) ◽  
pp. 901-911 ◽  
Author(s):  
Eugene Nalivaiko ◽  
William W. Blessing

In rabbits, raphe magnus/pallidus neurons form a link in the CNS pathway regulating changes in cutaneous blood flow elicited by nociceptive stimulation and activation of the central nucleus of the amygdala. To characterize relevant raphe-spinal neurons, we performed extracellular recordings from the rostral medullary raphe nuclei in anesthetized, paralyzed, mechanically ventilated rabbits. All studied neurons were antidromically activated from the dorsolateral funiculus of the spinal cord (C8–T2). Of 129 studied neurons, 40% were silent. The remaining neurons discharged spontaneously at 0.3–29 Hz. Nociceptive stimulation (lip squeeze with pliers) excited 63 (49%), inhibited 9 (7%), and did not affect 57 (44%) neurons. The same stimulation also elicited falls in ear pinna blood flow. In neurons activated by the stimulation, the increase in discharge preceded the fall in flow. Electrical stimulation of the spinal trigeminal tract excited 61/63 nociception-activated neurons [onset latencies range: 6–75 ms, mean: 28 ± 3 (SE) ms], inhibited 9/9 nociception-inhibited neurons (onset latencies range: 9–85 ms, mean: 32 ± 10 ms), and failed to affect 55/57 neurons insensitive to nociceptive stimulation. Neurons insensitive to nociceptive/trigeminal stimulation were also insensitive to nonnociceptive tactile stimulation and to electrical stimulation of the amygdala. They were either silent (32/45) or discharged regularly at low frequencies. They possessed long-duration action potentials (1.26 ± 0.08 ms) and slow-conducting axons (6.0 ± 0.5 m/s). These neurons may be serotonergic raphe-spinal cells. They do not appear to be involved in nociceptive-related cutaneous vascular control. Of the 63 neurons sensitive to nociceptive and trigeminal tract stimulation, 35 also responded to tactile stimulation (wide receptive field). These neurons possessed short action potentials (0.80 ± 0.03 ms) and fast-conducting axons (30.3 ± 3.1 m/s). In this subpopulation, electrical stimulation of the amygdala activated nearly all neurons tested (10/12), with a mean onset latency of 34 ± 3 ms. The remaining 28 neurons sensitive to nociceptive and trigeminal stimulation did not respond to tactile stimuli and were mainly unaffected by amygdala stimulation. It may be that fast-conducting raphe-spinal neurons, with wide multimodal receptive fields and with input from the central nucleus of the amygdala, constitute the bulbo-spinal link in the CNS pathway regulating cutaneous blood flow in response to nociceptive and alerting stimuli.

1982 ◽  
Vol 47 (5) ◽  
pp. 885-908 ◽  
Author(s):  
R. Gillette ◽  
M. P. Kovac ◽  
W. J. Davis

1. A population of interneurons that control feeding behavior in the mollusk Pleurobranchaea has been analyzed by dye injection and intracellular stimulation/recording in whole animals and reduced preparations. The population consists of 12-16 somata distributed in two bilaterally symmetrical groups on the anterior edge of the cerebropleural ganglion (brain). On the basis of their position adjacent to the cerebral lobes, these cells have been named paracerebral neurons (PCNs). This study concerns pme subset pf [MCs. the large, phasic ones, which have the strongest effect on the feeding rhythm (21). 2. Each PCN sends a descending axon via the ipsilateral cerebrobuccal connective to the buccal ganglion. Axon branches have not been detected in other brain or buccal nerves and hence the PCNs appear to be interneurons. 3. In whole-animal preparations, tonic intracellular depolarization of the PNCs causes them to discharge cyclic bursts of action potentials interrupted by a characteristic hyperpolarization. In all specimens that exhibit feeding behavior, the interburst hyperpolarization is invariably accompanied by radula closure and the beginning of proboscis retraction (the "bite"). No other behavorial effect of PCN stimulation has been observed. 4. In whole-animal preparations, the PCNs are excited by food and tactile stimulation of the oral veil, rhinophores, and tentacles. When such stimuli induce feeding the PCNs discharge in the same bursting pattern seen during tonic PCN depolarization, with the cyclic interburst hyperpolarization phase locked to the bit. When specimens egest an unpalatable object by cyclic buccal movements, however, the PCNs are silent. The PCNs therefore exhibit properties expected of behaviorally specific "command" neurons for feeding. 5. Silencing one or two PCNs by hyperpolarization may weaken but does not prevent feeding induced by natural food stimuli. Single PCNs therefore can be sufficient but are not necessary to induction of feeding behavior. Instead the PCNs presumably operate as a population to control feeding. 6. In isolated nervous system preparations tonic extracellular stimulation of the stomatogastric nerve of the buccal ganglion elicits a cyclic motor rhythm that is similar in general features to the PNC-induced motor rhythm. Bursts of PCN action potentials intercalated at the normal phase position in this cycle intensify the buccal rhythm. Bursts of PCN impulses intercalated at abnormal phase positions reset the buccal rhythm. The PCNs, therefore, also exhibit properties expected of pattern-generator elements and/or coordinating neurons for the buccal rhythm. 7. The PCNs are recruited into activity when the buccal motor rhythm is elicited by stomatogastric nerve stimulation or stimulation of the reidentifiable ventral white cell. The functional synergy between the PCNs and the buccal rhythm is therefore reciprocal. 8...


1993 ◽  
Vol 113 (2) ◽  
pp. 146-151 ◽  
Author(s):  
Tian-Ying Ren ◽  
E. Laurikainen ◽  
W. S. Quirk ◽  
J. M. Miller ◽  
A. L. Nuttall

1988 ◽  
Vol 118 (3) ◽  
pp. 471-483 ◽  
Author(s):  
L. M. Voloschin ◽  
E. Décima ◽  
J. H. Tramezzani

ABSTRACT Electrical stimulation of the XIII thoracic nerve (the 'mammary nerve') causes milk ejection and the release of prolactin and other hormones. We have analysed the route of the suckling stimulus at the level of different subgroups of fibres of the teat branch of the XIII thoracic nerve (TBTN), which innervates the nipple and surrounding skin, and assessed the micromorphology of the TBTN in relation to lactation. There were 844 ± 63 and 868 ± 141 (s.e.m.) nerve fibres in the TBTN (85% non-myelinated) in virgin and lactating rats respectively. Non-myelinated fibres were enlarged in lactating rats; the modal value being 0·3–0·4 μm2 for virgin and 0·4–0·5 μm2 for lactating rats (P > 0·001; Kolmogorov–Smirnov test). The modal value for myelinated fibres was 3–6 μm2 in both groups. The compound action potential of the TBTN in response to electrical stimulation showed two early volleys produced by the Aα- and Aδ-subgroups of myelinated fibres (conduction velocity rate of 60 and 14 m/s respectively), and a late third volley originated in non-myelinated fibres ('C') group; conduction velocity rate 1·4 m/s). Before milk ejection the suckling pups caused 'double bursts' of fibre activity in the Aδ fibres of the TBTN. Each 'double burst' consisted of low amplitude action potentials and comprised two multiple discharges (33–37 ms each) separated by a silent period of around 35 ms. The 'double bursts' occurred at a frequency of 3–4/s, were triggered by the stimulation of the nipple and were related to fast cheek movements visible only by watching the pups closely. In contrast, the Aα fibres of the TBTN showed brief bursts of high amplitude potentials before milk ejection. These were triggered by the stimulation of cutaneous receptors during gross slow sucking motions of the pup (jaw movements). Immediately before the triggering of milk ejection the mother was always asleep and a low nerve activity was recorded in the TBTN at this time. When reflex milk ejection occurred, the mother woke and a brisk increase in nerve activity was detected; this decreased when milk ejection was accomplished. In conscious rats the double-burst type of discharges in Aδ fibres was not observed, possibly because this activity cannot be detected by the recording methods currently employed in conscious animals. During milk ejection, action potentials of high amplitude were conveyed in the Aα fibres of the TBTN. During the treading time of the stretch reaction (SR), a brisk increase in activity occurred in larger fibres; during the stretching periods of the SR a burst-type discharge was again observed in slow-conducting afferents; when the pups changed nipple an abrupt increase in activity occurred in larger fibres. In summary, the non-myelinated fibres of the TBTN are increased in diameter during lactation, and the pattern of suckling-evoked nerve activity in myelinated fibres showed that (a) the double burst of Aδ fibres, produced by individual sucks before milk ejection, could be one of the conditions required for the triggering of the reflex, and (b) the nerve activity displayed during milk-ejection action may result, at least in part, from 'non-specific' stimulation of cutaneous receptors. J. Endocr. (1988) 118, 471–483


1979 ◽  
Vol 78 (1) ◽  
pp. 121-136
Author(s):  
GERALD E. SILVEY ◽  
IAN S. WILSON

The syncarid crustacean Anaspides tasmaniae rapidly flexes its free thoracic and abdominal segments in response to tactile stimulation of its body. This response decrements but recovers in slightly more than one hour. The fast flexion is evoked by single action potentials in the lateral of two large diameter fibres (40 μm) which lie on either side of the cord. The lateral giant fibre is made up of fused axons of 11 neurones, one in each of the last 5 thoracic and 6 abdominal ganglia. The soma of each neurone lies contralateral to the axon. Its neurite crosses that of its counterpart in the commissure and gives out dendrites into the neuropile of each hemiganglion. The lateral giant neurone receives input from the whole body but fires in response only to input from the fourth thoracic segment posteriorly. Both fibres respond with tactile stimulation of only one side. Since neither current nor action potentials spread from one fibre to the other, afferents must synapse with both giant neurones. The close morphological and physiological similarities of the lateral giant neurone in Anaspides to that in the crayfish (Eucarida) suggest that the lateral giant system arose in the ancestor common to syncarids and eucarids, prior to the Carboniferous.


1997 ◽  
Vol 17 (6) ◽  
pp. 686-694 ◽  
Author(s):  
Elvire Vaucher ◽  
Josiane Borredon ◽  
Gilles Bonvento ◽  
Jacques Seylaz ◽  
Pierre Lacombe

We earlier reported that electrical stimulation of the rat nucleus basalis of Meynert (NBM) induces large cerebral blood flow increases, particularly in frontal cortical areas but also in some subcortical regions. The present study was designed to address the issue of blood flow control exerted by NBM projections. To this aim, we have determined whether these flow increases were associated with proportionate changes in metabolic activity as evaluated by cerebral glucose utilization (CGU) strictly under the same experimental conditions in the conscious rat. An electrode was chronically implanted in a reactive site of the NBM as determined by laser-Doppler flowmetry (LDF) of the cortical circulation. One to two weeks later, while the cortical blood flow was monitored by LDF, we measured CGU using the [14C]2-deoxyglucose autoradiographic technique during unilateral electrical stimulation of the NBM, and analyzed the local flow-metabolism relationship. The large increases in cortical blood flow induced by NBM stimulation, exceeding 300% in various frontal areas, were associated with at most 24% increases in CGU (as compared with the control group) in one frontal area. By contrast, strong increases in CGU exceeding 150% were observed in subcortical regions ipsilateral to the stimulation, especially in extrapyramidal structures, associated with proportionate CBF changes. Thus, none of the blood flow changes observed in the cortex can be ascribed to an increased metabolic activity, whereas CBF and CGU were coupled in many subcortical areas. This result indicates that different mechanisms, which do not necessarily involve any metabolic factor, contribute to the regulation of the cerebral circulation at the cortical and subcortical level. Because the distribution of the uncoupling is coincident with that of cholinergic NBM projections directly reaching cortical microvessels, these data strongly support the hypothesis that NBM neurons are capable of exerting a neurogenic control of the cortical microcirculation.


2007 ◽  
Vol 98 (5) ◽  
pp. 2537-2549 ◽  
Author(s):  
Nazareth P. Castellanos ◽  
Eduardo Malmierca ◽  
Angel Nuñez ◽  
Valeri A. Makarov

Precise and reproducible spike timing is one of the alternatives of the sensory stimulus encoding. We test coherence (repeatability) of the response patterns elicited in projecting gracile neurons by tactile stimulation and its modulation provoked by electrical stimulation of the corticofugal feedback from the somatosensory (SI) cortex. To gain the temporal structure we adopt the wavelet-based approach for quantification of the functional stimulus–neural response coupling. We show that the spontaneous firing patterns (when they exist) are essentially random. Tactile stimulation of the neuron receptive field strongly increases the spectral power in the stimulus and 5- to 15-Hz frequency bands. However, the functional coupling (coherence) between the sensory stimulus and the neural response exhibits ultraslow oscillation (0.07 Hz). During this oscillation the stimulus coherence can temporarily fall below the statistically significant level, i.e., the functional stimulus–response coupling may be temporarily lost for a single neuron. We further demonstrate that electrical stimulation of the SI cortex increases the stimulus coherence for about 60% of cells. We find no significant correlation between the increment of the firing rate and the stimulus coherence, but we show that there is a positive correlation with the amplitude of the peristimulus time histogram. The latter argues that the observed facilitation of the neural response by the corticofugal pathway, at least in part, may be mediated through an appropriate ordering of the stimulus-evoked firing pattern, and the coherence enhancement is more relevant in gracilis nucleus than an increase of the number of spikes elicited by the tactile stimulus.


Sign in / Sign up

Export Citation Format

Share Document