scholarly journals Long-term effects of direct current are reproduced by intermittent depolarization of myelinated nerve fibers

2018 ◽  
Vol 120 (3) ◽  
pp. 1173-1185 ◽  
Author(s):  
M. Bączyk ◽  
E. Jankowska

Direct current (DC) potently increases the excitability of myelinated afferent fibers in the dorsal columns, both during DC polarization of these fibers and during a considerable (>1 h) postpolarization period. The aim of the present study was to investigate whether similarly long-lasting changes in the excitability of myelinated nerve fibers in the dorsal columns may be evoked by field potentials following stimulation of peripheral afferents and by subthreshold epidurally applied current pulses. The experiments were performed in deeply anesthetized rats. The effects were monitored by changes in nerve volleys evoked in epidurally stimulated hindlimb afferents and in the synaptic actions of these afferents. Both were found to be facilitated during as well as following stimulation of a skin nerve and during as well as following epidurally applied current pulses of 5- to 10-ms duration. The facilitation occurring ≤2 min after skin nerve stimulation could be linked to both primary afferent depolarization and large dorsal horn field potentials, whereas the subsequent changes (up to 1 h) were attributable to effects of the field potentials. The findings lead to the conclusion that the modulation of spinal activity evoked by DC does not require long-lasting polarization and that relatively short current pulses and intrinsic field potentials may contribute to plasticity in spinal activity. These results suggest the possibility of enhancing the effects of epidural stimulation in human subjects by combining it with polarizing current pulses and peripheral afferent stimulation and not only with continuous DC. NEW & NOTEWORTHY The aim of this study was to define conditions under which a long-term increase is evoked in the excitability of myelinated nerve fibers. The results demonstrate that a potent and long-lasting increase in the excitability of afferent fibers traversing the dorsal columns may be induced by synaptically evoked intrinsic field as well as by epidurally applied intermittent current pulses. They thus provide a new means for the facilitation of the effects of epidural stimulation.

2017 ◽  
Vol 118 (2) ◽  
pp. 1210-1220 ◽  
Author(s):  
Elzbieta Jankowska ◽  
Dominik Kaczmarek ◽  
Francesco Bolzoni ◽  
Ingela Hammar

The study indicates a new form of plasticity of myelinated fibers. The differences in time course of DC-evoked increases in the excitability of myelinated nerve fibers in the dorsal columns and in preterminal axonal branches suggest that distinct mechanisms are involved in them. The results show that combining epidural stimulation and transspinal DC polarization may dramatically improve their outcome and result in more effective pain control and the return of impaired motor functions.


1989 ◽  
Vol 256 (6) ◽  
pp. R1331-R1339
Author(s):  
K. H. Pitetti ◽  
G. A. Iwamoto ◽  
J. H. Mitchell ◽  
G. A. Ordway

We used a constant flow preparation to study the changes in left circumflex coronary arterial (LCCA) pressure and resistance evoked by electrical stimulation of branches of muscle, cutaneous, and mixed nerves in the hindlimb of anesthetized dogs. Stimulation (20 Hz) of all three nerve types at 20, 70, 100, and 200 times the voltage threshold that evoked compound action potentials significantly (P less than 0.05) increased LCCA resistance. Stimulation at three and five times threshold had no effect on this same variable. Cooling the nerve to 2-4 degrees C, temperatures that block myelinated nerve fibers, attenuated but did not abolish the increase in LCCA resistance. Combinations of beta- and alpha-adrenergic and cholinergic blockade established that the biphasic change evoked by nerve stimulation was due to an initial alpha-adrenergic vasoconstriction followed by a metabolite-induced vasodilation. These data demonstrate that stimulation of muscle, cutaneous, or mixed nerve afferent C-fibers increases coronary arterial resistance by alpha-adrenergic vasoconstriction.


1953 ◽  
Vol 98 (3) ◽  
pp. 269-276 ◽  
Author(s):  
E. De Robertis ◽  
C. M. Franchi

A technique has been developed for the extrusion of axon material from myelinated nerve fibers. This material is then compressed and prepared for observation with the electron microscope. All the stages of preparation and purification of the axon material can be checked microscopically and in the present paper they are illustrated with phase contrast photomicrographs. Observation with the electron microscope of the compressed axons showed the presence of the following components: granules, fibrils, and a membranous material. Only the larger granules could be seen with the ordinary microscope. A considerable number of dense granules were observed. Of these the largest resemble typical mitochondria of 250 mµ by 900 mµ. In addition rows or small clusters of dense granules ranging in diameter from 250 to 90 mµ were present. In several specimens fragments of a membrane 120 to 140 A thick and intimately connected with the axon were found. The entire axon appeared to be constituted of a large bundle of parallel tightly packed fibrils among which the granules are interspersed. The fibrils are of indefinite length and generally smooth. They are rather labile structures, less resistant in the rat than in the toad nerve. They varied between 100 and 400 A in diameter and in some cases disintegrated into very fine filaments (less than 100 A thick). The significance is discussed of the submicroscopic structures revealed by electron microscopy of the material prepared in the way described.


Sign in / Sign up

Export Citation Format

Share Document