scholarly journals Neural correlates of spatial orienting in the human superior colliculus

2011 ◽  
Vol 106 (5) ◽  
pp. 2273-2284 ◽  
Author(s):  
Elaine J. Anderson ◽  
Geraint Rees

A natural visual scene contains more information than the visual system has the capacity to simultaneously process, requiring specific items to be selected for detailed analysis at the expense of others. Such selection and inhibition are fundamental in guiding search behavior, but the neural basis of these mechanisms remains unclear. Abruptly appearing visual items can automatically capture attention, but once attention has been directed away from the salient event, return to that same location is slowed. In non-human primates, signals associated with attentional capture (AC) and subsequent inhibition of return (IOR) have been recorded from the superior colliculus (SC)—a structure known to play a pivotal role in reflexive spatial orienting. Here, we sought to establish whether similar signals could be recorded from the human SC, as well as early retinotopic cortical visual areas, where signals associated with AC and IOR have yet to be investigated with respect to oculomotor responses. Using an optimized oculomotor paradigm together with high-field, high-spatial resolution functional magnetic resonance imaging and high-speed eye tracking, we demonstrate that BOLD signal changes recorded from the human SC correlate strongly with our saccadic measures of AC and IOR. A qualitatively similar pattern of responses was found for V1, but only the inhibitory response associated with IOR persisted through V2 and V3. Although the SC plays a role in mediating these automatic attentional biasing signals, the source of these signals is likely to lie in higher cortical areas.

2011 ◽  
Vol 11 (8) ◽  
pp. 8-8 ◽  
Author(s):  
D. V. D'Souza ◽  
T. Auer ◽  
H. Strasburger ◽  
J. Frahm ◽  
B. B. Lee

1998 ◽  
Vol 353 (1377) ◽  
pp. 1801-1818 ◽  
Author(s):  
◽  
N. K. Logothetis

Figures that can be seen in more than one way are invaluable tools for the study of the neural basis of visual awareness, because such stimuli permit the dissociation of the neural responses that underlie what we perceive at any given time from those forming the sensory representation of a visual pattern. To study the former type of responses, monkeys were subjected to binocular rivalry, and the response of neurons in a number of different visual areas was studied while the animals reported their alternating percepts by pulling levers. Perception–related modulations of neural activity were found to occur to different extents in different cortical visual areas. The cells that were affected by suppression were almost exclusively binocular, and their proportion was found to increase in the higher processing stages of the visual system. The strongest correlations between neural activity and perception were observed in the visual areas of the temporal lobe. A strikingly large number of neurons in the early visual areas remained active during the perceptual suppression of the stimulus, a finding suggesting that conscious visual perception might be mediated by only a subset of the cells exhibiting stimulus selective responses. These physiological findings, together with a number of recent psychophysical studies, offer a new explanation of the phenomenon of binocular rivalry. Indeed, rivalry has long been considered to be closely linked with binocular fusion and stereopsis, and the sequences of dominance and suppression have been viewed as the result of competition between the two monocular channels. The physiological data presented here are incompatible with this interpretation. Rather than reflecting interocular competition, the rivalry is most probably between the two different central neural representations generated by the dichoptically presented stimuli. The mechanisms of rivalry are probably the same as, or very similar to, those underlying multistable perception in general, and further physiological studies might reveal a much about the neural mechanisms of our perceptual organization.


1976 ◽  
Vol 256 (3) ◽  
pp. 497-508 ◽  
Author(s):  
P G Clarke ◽  
D Whitteridge

2021 ◽  
Author(s):  
Borja Rodriguez Herreros ◽  
Julia L Amengual ◽  
Jimena Lucrecia Vazquez-Anguiano ◽  
Silvio Ionta ◽  
Carlo Miniussi ◽  
...  

Converging evidence indicates that response inhibition may arise from the interaction of effortful proactive and reflexive reactive mechanisms. However, the distinction between the neural basis sustaining proactive and reactive inhibitory processes is still unclear. To identify reliable neural markers of proactive inhibition, we examined the behavioral and electrophysiological correlates elicited by manipulating the degree of inhibitory control in a task that involved the detection and amendment of errors. Restraining or encouraging the correction of errors did not affect the time course of the behavioral and neural correlates associated to reactive inhibition. We rather found that a bilateral and sustained decrease of corticomotor excitability was required for an effective proactive inhibitory control, whereas selective strategies were associated with defective response suppression. Our results provide behavioral and electrophysiological conclusive evidence of a comprehensive proactive inhibitory mechanism, with a distinctive underlying neural basis, governing the commission and amendment of errors. Together, these findings hint at a decisive role for changes in corticomotor excitability in determining whether an action will be successfully suppressed.


Sign in / Sign up

Export Citation Format

Share Document