neural representations
Recently Published Documents





2022 ◽  
Vol 5 (1) ◽  
Tomoyasu Horikawa ◽  
Yukiyasu Kamitani

AbstractStimulus images can be reconstructed from visual cortical activity. However, our perception of stimuli is shaped by both stimulus-induced and top-down processes, and it is unclear whether and how reconstructions reflect top-down aspects of perception. Here, we investigate the effect of attention on reconstructions using fMRI activity measured while subjects attend to one of two superimposed images. A state-of-the-art method is used for image reconstruction, in which brain activity is translated (decoded) to deep neural network (DNN) features of hierarchical layers then to an image. Reconstructions resemble the attended rather than unattended images. They can be modeled by superimposed images with biased contrasts, comparable to the appearance during attention. Attentional modulations are found in a broad range of hierarchical visual representations and mirror the brain–DNN correspondence. Our results demonstrate that top-down attention counters stimulus-induced responses, modulating neural representations to render reconstructions in accordance with subjective appearance.

2021 ◽  
Vol 45 (1) ◽  
Wenbo Tang ◽  
Shantanu P. Jadhav

When navigating through space, we must maintain a representation of our position in real time; when recalling a past episode, a memory can come back in a flash. Interestingly, the brain's spatial representation system, including the hippocampus, supports these two distinct timescale functions. How are neural representations of space used in the service of both real-world navigation and internal mnemonic processes? Recent progress has identified sequences of hippocampal place cells, evolving at multiple timescales in accordance with either navigational behaviors or internal oscillations, that underlie these functions. We review experimental findings on experience-dependent modulation of these sequential representations and consider how they link real-world navigation to time-compressed memories. We further discuss recent work suggesting the prevalence of these sequences beyond hippocampus and propose that these multiple-timescale mechanisms may represent a general algorithm for organizing cell assemblies, potentially unifying the dual roles of the spatial representation system in memory and navigation. Expected final online publication date for the Annual Review of Neuroscience, Volume 45 is July 2022. Please see for revised estimates.

2021 ◽  
David M Cole ◽  
Philipp Stämpfli ◽  
Robert Gandia ◽  
Louis Schibli ◽  
Sandro Gantner ◽  

Persistent pain alters brain-body representations, highlighting their potential pathological significance. In chronic low back pain (LBP), sparse evidence points towards a shift of the cortical representation of sensory afferents of the back. However, systematic investigations of the cortical representation of tactile and proprioceptive paraspinal afferents along the thoracolumbar axis are lacking. Detailed cortical maps of paraspinal afferent input might be crucial to further explore potential relationships between brain changes and the development and maintenance of chronic LBP. We therefore validated a novel and functional magnetic resonance imaging- (fMRI-)compatible method of mapping cortical representations of tactile and proprioceptive afferents of the back, using pneumatic vibrotactile stimulation ("pneuVID") at varying frequencies and paraspinal locations, in conjunction with high-resolution fMRI. We hypothesised that: (i) high (80 Hz) frequency stimulation would lead to increased postural sway compared to low (20 Hz) stimulation, due to differential evoked mechanoreceptor contributions to postural control (proprioceptive vs tactile); and (ii) that high (80 Hz) versus low (20 Hz) frequency stimulation would be associated with neuronal activity in distinct primary somatosensory (S1) and motor (M1) cortical targets of tactile and proprioceptive afferents (N=15, healthy volunteers). Additionally, we expected neural representations to vary spatially along the thoracolumbar axis. We found significant differences between neural representations of low and high frequency stimulation and between representations of thoracic and lumbar paraspinal locations, in several bilateral sensorimotor cortical regions. Proprioceptive (80 Hz) stimulation preferentially activated sub-regions S1 3a and M1 4p, while tactile (20 Hz) stimulation was more encoded in S1 3b and M1 4a. Moreover, in S1, lower back proprioceptive stimulation activated dorsal-posterior representations, compared to ventral-anterior representations activated by upper back stimulation. As per our hypotheses, we found distinct sensorimotor cortical tactile and proprioceptive representations, with the latter displaying clear topographic differences between the upper and lower back. This thus represents the first behavioural and neurobiological validation of the novel pneuVID method for stimulating muscle spindles and mapping cortical representations of paraspinal afferents. Future investigations of detailed cortical maps will be of major importance in elucidating the role of cortical reorganization in the pathophysiology of chronic LBP.

2021 ◽  
Balazs B Ujfalussy ◽  
Gergő Orbán

Efficient planning in complex environments requires that uncertainty associated with current inferences and possible consequences of forthcoming actions is represented. Representation of uncertainty has been established in sensory systems during simple perceptual decision making tasks but it remains unclear if complex cognitive computations such as planning and navigation are also supported by probabilistic neural representations. Here we capitalized on gradually changing uncertainty along planned motion trajectories during hippocampal theta sequences to capture signatures of uncertainty representation in population responses. In contrast with prominent theories, we found no evidence of encoding parameters of probability distributions in the momentary population activity recorded in an open-field navigation task in rats. Instead, uncertainty was encoded sequentially by sampling motion trajectories randomly in subsequent theta cycles from the distribution of potential trajectories. Our analysis is the first to demonstrate that the hippocampus is well equipped to contribute to optimal planning by representing uncertainty.

2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. 204-204
Kuan Wang

Abstract Clinical studies suggest an association between EWB and the risk or progression of AD. However, the mechanistic link and causal relationship between EWB and AD remain unknown, due to limited experimental access and control of the underlying human brain processes. Animal models offer genetic control of AD mutations and neural circuit analysis tools, but subjective feelings of EWB cannot be assessed through self-report. To study EWB across species, we adopt a theoretical framework that views emotions as central brain states that respond to exteroceptive or interoceptive stimuli and cause multiple cognitive, somatic and behavioral changes. Recent neuroanatomical and functional imaging studies have identified evolutionarily related brain circuits in the encoding and regulation of central emotional states in animals. Dr. Wang will review progress in elucidating the functional activities of these circuits and discuss the challenges and opportunities to link these neural representations to EWB and AD related pathological progression.

2021 ◽  
Vol 17 (S5) ◽  
Ihab Hajjar ◽  
Jinho Choi ◽  
Elliot Moore ◽  
Vince D. Calhoun ◽  
Anees Abrol ◽  

Sign in / Sign up

Export Citation Format

Share Document