Synergistic Enhancement of Glutamate-Mediated Responses by Serotonin and Forskolin in Adult Mouse Spinal Dorsal Horn Neurons

2002 ◽  
Vol 87 (2) ◽  
pp. 732-739 ◽  
Author(s):  
Guo-Du Wang ◽  
Min Zhuo

Glutamate is the major excitatory amino acid neurotransmitter in the CNS, including the neocortex, hippocampus, and spinal cord. Normal synaptic transmission is mainly mediated by glutamate AMPA and/or kainate receptors. Glutamate N-methyl-d-aspartate (NMDA) receptors are normally inactive and only activated when a sufficient postsynaptic depolarization is induced by the activity. Here we show that in sensory synapses of adult mouse, some synaptic responses (26.3% of a total of 38 experiments) between primary afferent fibers and dorsal horn neurons are almost completely mediated by NMDA receptors. Dorsal root stimulation did not elicit any detectable AMPA/kainate receptor-mediated responses in these synapses. Unlike young spinal cord, serotonin alone did not produce any long-lasting synaptic enhancement in adult spinal dorsal horn neurons. However, co-application of the adenylyl cyclase activator forskolin and serotonin (5-HT) produced long-lasting enhancement, including the recruitment of functional AMPA receptor-mediated responses. Calcium-sensitive, calmodulin-regulated adenylyl cyclases (AC1, AC8) are required for the enhancement. Furthermore the thresholds for generating action potential responses were decreased, and, in many cases, co-application of forskolin and 5-HT led to the generation of action potentials by previously subthreshold stimulation of primary afferent fibers in the presence of the NMDA receptor blocker 2-amino-5-phosphonovaleric acid. Our results suggest that pure NMDA synapses exist on sensory neurons in adult spinal cord and that they may contribute to functional sensory transmission. The synergistic recruitment of functional AMPA responses by 5-HT and forskolin provides a new cellular mechanism for glutamatergic synapses in mammalian spinal cord.

1999 ◽  
Vol 88 (4) ◽  
pp. 893-897 ◽  
Author(s):  
Yoshiya Miyazaki ◽  
Takehiko Adachi ◽  
Jun Utsumi ◽  
Tsutomu Shichino ◽  
Hajime Segawa

2005 ◽  
Vol 102 (1) ◽  
pp. 152-164 ◽  
Author(s):  
Jungang Wang ◽  
Mikito Kawamata ◽  
Akiyoshi Namiki

Background To gain a better understanding of spinal cord injury (SCI)-induced central neuropathic pain, the authors investigated changes in properties of spinal dorsal horn neurons located rostrally and caudally to the lesion and their sensitivity to morphine in rats after SCI. Methods The right spinal cord of Sprague-Dawley rats was hemisected at the level of L2. At 10 to 14 days after the SCI, when mechanical hyperalgesia/allodynia had fully developed, spontaneous activity and evoked responses to mechanical stimuli of wide-dynamic-range (WDR) and high-threshold neurons rostral and caudal to the lesion were recorded. Effects of cumulative doses of systemic (0.1-3 mg/kg) and spinal (0.1-5 microg) administration of morphine on spontaneous activity and evoked responses to the stimuli of the neurons were evaluated. Results Spontaneous activity significantly increased in WDR neurons both rostral and caudal to the SCI site, but high-frequency background discharges with burst patterns were only observed in neurons rostral to the SCI site. Significant increases in responses to the mechanical stimuli were seen both in WDR and high-threshold neurons located both rostrally and caudally to the lesion. The responses to nonnoxious and noxious stimuli were significantly greater in caudal WDR neurons than in rostral WDR neurons. In contrast, the responses to pinch stimuli were significantly higher in rostral high-threshold neurons than those in caudal high-threshold neurons. Systemically administered morphine had a greater effect on responses to nonnoxious and noxious stimuli of rostral WDR neurons than those of caudal WDR neurons. Spinally administered morphine significantly suppressed responses of WDR neurons in SCI animals to nonnoxious stimuli compared with those in sham-operated control animals. Conclusions The findings suggest that changes in properties of spinal dorsal horn neurons after SCI are caused by different mechanisms, depending on the classification of the neurons and their segmental locations.


1999 ◽  
Vol 88 (4) ◽  
pp. 893-897 ◽  
Author(s):  
Yoshiya Miyazaki ◽  
Takehiko Adachi ◽  
Jun Utsumi ◽  
Tsutomu Shichino ◽  
Hajime Segawa

2009 ◽  
Vol 13 (S1) ◽  
Author(s):  
M. Gassner ◽  
M. Wagner ◽  
H. Fischer ◽  
R. Drdla ◽  
T. Jäger ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document