scholarly journals Direct assessment of presynaptic modulation of cortico-striatal glutamate release in a Huntington’s disease mouse model

2018 ◽  
Vol 120 (6) ◽  
pp. 3077-3084 ◽  
Author(s):  
Ellen T. Koch ◽  
Cameron L. Woodard ◽  
Lynn A. Raymond

Glutamate is the main excitatory neurotransmitter in the brain, and impairments in its signaling are associated with many neurological disorders, including Huntington’s disease (HD). Previous studies in HD mouse models demonstrate altered glutamate receptor distribution and signaling at cortico-striatal synapses, and some studies suggest that glutamate release is altered; however, traditional methods to study synaptic glutamate release are indirect or have poor temporal resolution. Here we utilize iGluSnFR, a modified green fluorescent protein reporter for real-time imaging of glutamate transmission, to study presynaptic modulation of cortical glutamate release in the striatum of the YAC128 HD mouse model. We determined that iGluSnFR can be used to accurately measure short- and long-term changes in glutamate release caused by modulation of extracellular Ca2+ levels, activation of presynaptic receptors, and high-frequency stimulation (HFS) protocols. We also confirmed a difference in the expression of HFS-induced long-term depression in YAC128. Together, this research demonstrates the utility of iGluSnFR in studying presynaptic modulation of glutamate release in healthy mice and disease models that display impairments in glutamate signaling. NEW & NOTEWORTHY We use iGluSnFR to directly assess presynaptic modulation of cortico-striatal glutamate release in brain slice and compare changes in glutamate release between wild type and a Huntington’s disease mouse model, YAC128. We observed reductions in glutamate release after low extracellular Ca2+ and activation of various presynaptic receptors. We also demonstrate a presynaptic mechanism of reduced glutamate release in high-frequency stimulation-induced long-term depression and show this to be altered in YAC128.

1993 ◽  
Vol 70 (5) ◽  
pp. 1937-1949 ◽  
Author(s):  
D. M. Lovinger ◽  
E. C. Tyler ◽  
A. Merritt

1. We have examined plasticity at glutamatergic synapses on neurons in slices of neostriatum, a forebrain area involved in movement and cognitive function. 2. High-frequency stimulation of afferent inputs to neostriatal neurons induced depression of glutamatergic synaptic transmission. Depression could be induced using either prolonged trains or short repetitive bursts of high-frequency stimulation. Depression developed within seconds after such stimulation. Responses recovered to baseline levels within 10 min in most slices but persisted for up to 60 min in others. 3. Postsynaptic passive electrical properties and the ability to elicit action potentials by postsynaptic depolarization were not altered during depression. 4. The magnitude and time course of depression was similar whether postsynaptic responses were mediated by alpha amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) or N-methyl-D-aspartate (NMDA) type glutamate receptors. Depression was not altered by antagonism of AMPA or NMDA receptors or potentiation of AMPA receptor function with aniracetam. 5. Depression was blocked by treatments that increase transmitter release including increased extracellular Ca2+, application of 4-aminopyridine, or application of phorbol ester. 6. Our findings indicate that glutamatergic synapses in neostriatum are capable of expressing a form of synaptic depression that may involve decreased glutamate release.


2000 ◽  
Vol 83 (4) ◽  
pp. 2412-2420 ◽  
Author(s):  
Hiroshi Ikeda ◽  
Tatsuya Asai ◽  
Kazuyuki Murase

We investigated the neuronal plasticity in the spinal dorsal horn and its relationship with spinal inhibitory networks using an optical-imaging method that detects neuronal excitation. High-intensity single-pulse stimulation of the dorsal root activating both A and C fibers evoked an optical response in the lamina II (the substantia gelatinosa) of the dorsal horn in transverse slices of 12- to 25-day-old rat spinal cords stained with a voltage-sensitive dye, RH-482. The optical response, reflecting the net neuronal excitation along the slice-depth, was depressed by 28% for more than 1 h after a high-frequency conditioning stimulation of A fibers in the dorsal root (3 tetani of 100 Hz for 1 s with an interval of 10 s). The depression was not induced in a perfusion solution containing an NMDA antagonist,dl-2-amino-5-phosphonovaleric acid (AP5; 30 μM). In a solution containing the inhibitory amino acid antagonists bicuculline (1 μM) and strychnine (3 μM), and also in a low Cl−solution, the excitation evoked by the single-pulse stimulation was enhanced after the high-frequency stimulation by 31 and 18%, respectively. The enhanced response after conditioning was depotentiated by a low-frequency stimulation of A fibers (0.2–1 Hz for 10 min). Furthermore, once the low-frequency stimulation was applied, the high-frequency conditioning could not potentiate the excitation. Inhibitory transmissions thus regulate the mode of synaptic plasticity in the lamina II most likely at afferent terminals. The high-frequency conditioning elicits a long-term depression (LTD) of synaptic efficacy under a greater activity of inhibitory amino acids, but it results in a long-term potentiation (LTP) when inhibition is reduced. The low-frequency preconditioning inhibits the potentiation induction and maintenance by the high-frequency conditioning. These mechanisms might underlie robust changes of nociception, such as hypersensitivity after injury or inflammation and pain relief after electrical or cutaneous stimulation.


2019 ◽  
Vol 116 (13) ◽  
pp. 6397-6406 ◽  
Author(s):  
Xi Chen ◽  
Xiao Li ◽  
Yin Ting Wong ◽  
Xuejiao Zheng ◽  
Haitao Wang ◽  
...  

Memory is stored in neural networks via changes in synaptic strength mediated in part by NMDA receptor (NMDAR)-dependent long-term potentiation (LTP). Here we show that a cholecystokinin (CCK)-B receptor (CCKBR) antagonist blocks high-frequency stimulation-induced neocortical LTP, whereas local infusion of CCK induces LTP. CCK−/−mice lacked neocortical LTP and showed deficits in a cue–cue associative learning paradigm; and administration of CCK rescued associative learning deficits. High-frequency stimulation-induced neocortical LTP was completely blocked by either the NMDAR antagonist or the CCKBR antagonist, while application of either NMDA or CCK induced LTP after low-frequency stimulation. In the presence of CCK, LTP was still induced even after blockade of NMDARs. Local application of NMDA induced the release of CCK in the neocortex. These findings suggest that NMDARs control the release of CCK, which enables neocortical LTP and the formation of cue–cue associative memory.


2003 ◽  
Vol 98 (4) ◽  
pp. 882-887 ◽  
Author(s):  
Veerle Visser-Vandewalle ◽  
Yasin Temel ◽  
Henry Colle ◽  
Chris van der Linden

✓ The aim of this study was to investigate the effect of high-frequency stimulation (HFS) of the subthalamic nucleus (STN) in patients with a subtype of multiple system atrophy (MSA) in which levodopa-unresponsive MSA parkinsonism (MSA-P) is predominant. After a local anesthetic was administered, electrodes were stereotactically implanted bilaterally into the STN in four patients with MSA-P and predominantly akinetorigid symptoms. Unified Parkinson's Disease Rating Scale (UPDRS) scores were evaluated preoperatively, at 1 month, and at long-term follow up. At 1 month the median decrease in the UPDRS III motor score was 22 on the 56-point scale (decreases of 16, 13, 29, and 15 points compared with baseline for Cases 1, 2, 3, and 4, respectively). This was mainly due to an improvement in rigidity and akinesia. The median decrease in the UPDRS II score was 11 on the 52-point scale (respective decreases of 5, 7, 13, and 9 points). At 2 years (mean follow up 27 months) there was a median decrease in the UPDRS III score of 12 (respective decreases of 18, 13, 21, and 9 points), and in the UPDRS II score of 5 (with respective decreases of 2, 2, 17, and 2), both compared with the stimulation off state. At long-term follow up there was an increase in the individual Schwab and England scores of 10 to 15% in the stimulation on compared with the stimulation off condition. There was a beneficial effect of STN HFS in these four patients on both a short-term and a long-term basis. A larger prospective study is justified.


2019 ◽  
Vol 121 (2) ◽  
pp. 609-619 ◽  
Author(s):  
Enhui Pan ◽  
Zirun Zhao ◽  
James O. McNamara

Hippocampal mossy fiber axons simultaneously activate CA3 pyramidal cells and stratum lucidum interneurons (SLINs), the latter providing feedforward inhibition to control CA3 pyramidal cell excitability. Filopodial extensions of giant boutons of mossy fibers provide excitatory synaptic input to the SLIN. These filopodia undergo extraordinary structural plasticity causally linked to execution of memory tasks, leading us to seek the mechanisms by which activity regulates these synapses. High-frequency stimulation of the mossy fibers induces long-term depression (LTD) of their calcium-permeable AMPA receptor synapses with SLINs; previous work localized the site of induction to be postsynaptic and the site of expression to be presynaptic. Yet, the underlying signaling events and the identity of the retrograde signal are incompletely understood. We used whole cell recordings of SLINs in hippocampal slices from wild-type and mutant mice to explore the mechanisms. Genetic and pharmacologic perturbations revealed a requirement for both the receptor tyrosine kinase TrkB and its agonist, brain-derived neurotrophic factor (BDNF), for induction of LTD. Inclusion of inhibitors of Trk receptor kinase and PLC in the patch pipette prevented LTD. Endocannabinoid receptor antagonists and genetic deletion of the CB1 receptor prevented LTD. We propose a model whereby release of BDNF from mossy fiber filopodia activates TrkB and PLCγ1 signaling postsynaptically within SLINs, triggering synthesis and release of an endocannabinoid that serves as a retrograde signal, culminating in reduced glutamate release. Insights into the signaling pathways by which activity modifies function of these synapses will facilitate an understanding of their contribution to the local circuit and behavioral consequences of hippocampal granule cell activity. NEW & NOTEWORTHY We investigated signaling mechanisms underlying plasticity of the hippocampal mossy fiber filopodial synapse with interneurons in stratum lucidum. High-frequency stimulation of the mossy fibers induces long-term depression of this synapse. Our findings are consistent with a model in which brain-derived neurotrophic factor released from filopodia activates TrkB of a stratum lucidum interneuron; the ensuing activation of PLCγ1 induces synthesis of an endocannabinoid, which provides a retrograde signal leading to reduced release of glutamate presynaptically.


Sign in / Sign up

Export Citation Format

Share Document