awake rats
Recently Published Documents


TOTAL DOCUMENTS

560
(FIVE YEARS 26)

H-INDEX

59
(FIVE YEARS 4)

2021 ◽  
Vol 15 ◽  
Author(s):  
Gabriele Russo ◽  
Xavier Helluy ◽  
Mehdi Behroozi ◽  
Denise Manahan-Vaughan

Functional magnetic resonance imaging, as a non-invasive technique, offers unique opportunities to assess brain function and connectivity under a broad range of applications, ranging from passive sensory stimulation to high-level cognitive abilities, in awake animals. This approach is confounded, however, by the fact that physical restraint and loud unpredictable acoustic noise must inevitably accompany fMRI recordings. These factors induce marked stress in rodents, and stress-related elevations of corticosterone levels are known to alter information processing and cognition in the rodent. Here, we propose a habituation strategy that spans specific stages of adaptation to restraint, MRI noise, and confinement stress in awake rats and circumvents the need for surgical head restraint. This habituation protocol results in stress levels during awake fMRI that do not differ from pre-handling levels and enables stable image acquisition with very low motion artifacts. For this, rats were gradually trained over a period of three weeks and eighteen training sessions. Stress levels were assessed by analysis of fecal corticosterone metabolite levels and breathing rates. We observed significant drops in stress levels to below pre-handling levels at the end of the habituation procedure. During fMRI in awake rats, after the conclusion of habituation and using a non-invasive head-fixation device, breathing was stable and head motion artifacts were minimal. A task-based fMRI experiment, using acoustic stimulation, conducted 2 days after the end of habituation, resulted in precise whole brain mapping of BOLD signals in the brain, with clear delineation of the expected auditory-related structures. The active discrimination by the animals of the acoustic stimuli from the backdrop of scanner noise was corroborated by significant increases in BOLD signals in the thalamus and reticular formation. Taken together, these data show that effective habituation to awake fMRI can be achieved by gradual and incremental acclimatization to the experimental conditions. Subsequent BOLD recordings, even during superimposed acoustic stimulation, reflect low stress-levels, low motion and a corresponding high-quality image acquisition. Furthermore, BOLD signals obtained during fMRI indicate that effective habituation facilitates selective attention to sensory stimuli that can in turn support the discrimination of cognitive processes in the absence of stress confounds.


2021 ◽  
Vol 15 ◽  
Author(s):  
Joshua Leaston ◽  
Praveen Kulkarni ◽  
Codi Gharagouzloo ◽  
Ju Qiao ◽  
Nicole Bens ◽  
...  

Ferumoxytol, an iron oxide nanoparticle, was infused into the lateral cerebroventricle of awake rats to follow its movement and clearance from the brain using magnetic resonance imaging. Within minutes the contrast agent could be observed accumulating in the subarachnoid space, nasal cavity, nasal pharynx, and soft palate at the back of the throat. In a subsequent study fluorescent quantum dots were infused into the brain of rats and within 15 min could be observed in the esophagus using microscopy. These imaging studies clearly show that these large nanoparticle tracers (∼20 nm in diameter) leave the brain through the nasal cavity and end up in the gut. There are numerous studies going back decades reporting the clearance of tracers put directly into the brain. While these studies show the slow accumulation of trace in the blood and lymphatics, they report only accounting for less than 50% of what was originally put in the brain.


Biosensors ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 429
Author(s):  
Yuhling Wang ◽  
Tsung-Sheng Chu ◽  
Yan-Ren Lin ◽  
Chia-Hui Tsao ◽  
Chia-Hua Tsai ◽  
...  

Understanding the relationship between brain function and natural behavior remains a significant challenge in neuroscience because there are very few convincing imaging/recording tools available for the evaluation of awake and freely moving animals. Here, we employed a miniaturized head-mounted scanning photoacoustic imaging (hmPAI) system to image real-time cortical dynamics. A compact photoacoustic (PA) probe based on four in-house optical fiber pads and a single custom-made 48-MHz focused ultrasound transducer was designed to enable focused dark-field PA imaging, and miniature linear motors were included to enable two-dimensional (2D) scanning. The total dimensions and weight of the proposed hmPAI system are only approximately 50 × 64 × 48 mm and 58.7 g (excluding cables). Our ex vivo phantom experimental tests revealed that a spatial resolution of approximately 0.225 mm could be achieved at a depth of 9 mm. Our in vivo results further revealed that the diameters of cortical vessels draining into the superior sagittal sinus (SSS) could be clearly imaged and continuously observed in both anesthetized rats and awake, freely moving rats. Statistical analysis showed that the full width at half maximum (FWHM) of the PA A-line signals (relative to the blood vessel diameter) was significantly increased in the selected SSS-drained cortical vessels of awake rats (0.58 ± 0.17 mm) compared with those of anesthetized rats (0.31 ± 0.09 mm) (p < 0.01, paired t-test). In addition, the number of pixels in PA B-scan images (relative to the cerebral blood volume (CBV)) was also significantly increased in the selected SSS-drained blood vessels of awake rats (107.66 ± 23.02 pixels) compared with those of anesthetized rats (81.99 ± 21.52 pixels) (p < 0.01, paired t-test). This outcome may result from a more active brain in awake rats than in anesthetized rats, which caused cerebral blood vessels to transport more blood to meet the increased nutrient demand of the tissue, resulting in an obvious increase in blood vessel volume. This hmPAI system was further validated for utility in the brains of awake and freely moving rats, showing that their natural behavior was unimpaired during vascular imaging, thereby providing novel opportunities for studies of behavior, cognition, and preclinical models of brain diseases.


Author(s):  
Giuliano Taccola ◽  
Stanislav Culaclii ◽  
Hui Zhong ◽  
Parag N. Gad ◽  
Wentai Liu ◽  
...  

In intact and spinal injured anesthetized animals, stimulation levels that did not induce any visible muscle twitches, were used to elicit motor evoked potentials (MEPs) of varying amplitude, reflecting the temporal and amplitude dynamics of the background excitability of spinal networks. To characterize the physiological excitability states of neuronal networks driving movement, we designed five experiments in awake rats chronically implanted with an epidural stimulating interface, with and without a spinal cord injury (SCI). Firstly, an uninjured rat at rest underwent a series of single electrical pulses at sub motor-threshold intensity, which generated responses that were continuously recorded from flexor and extensor hindlimb muscles, showing an intrinsic patterned modulation of MEPs. Responses were recruited by increasing strengths of stimulation and the amplitudes were moderately correlated between flexors and extensors. Next, after SCI, four awake rats at rest showed electrically induced MEPs, varying largely in amplitude of both flexors and extensors that were mainly synchronously modulated. After full anesthesia, MEP amplitudes were largely reduced, although stimulation still generated random baseline changes, unveiling an intrinsic stochastic modulation. The current five cases demonstrate a methodology that can be feasibly replicated in a broader group of awake and behaving rats to further define experimental treatments involving neuroplasticity. Beside validating a new technology for a neural stimulating interface, the present data support the broader message that there were intrinsic patterned and stochastic modulation of baseline excitability reflecting the dynamics of physiological states of spinal networks.


2021 ◽  
Author(s):  
Joshua Leaston ◽  
Praveen Kulkarni ◽  
Codi Gharagouzloo ◽  
Ju Qiao ◽  
Nicole Bens ◽  
...  

Abstract Ferumoxytol an iron oxide nanoparticle was infused into the lateral cerebroventricle of awake rats to follow its movement and clearance from the brain using magnetic resonance imaging. Within minutes the contrast agent could be observed accumulating on the soft palate at the back of the throat. In a subsequent study fluorescent quantum dots were infused into the brain of rats and within 15 min could be observed in the esophagus using microscopy. These imaging studies clearly show the gut is helping to clear waste from the brain.


Author(s):  
Meimei Guo ◽  
Yuanyuan Fang ◽  
Jinpiao Zhu ◽  
Chang Chen ◽  
Zongze Zhang ◽  
...  

Author(s):  
Maik Derksen ◽  
Valerie Rhemrev ◽  
Marijke van der Veer ◽  
Linda Jolink ◽  
Birte Zuidinga ◽  
...  

2020 ◽  
Vol 14 ◽  
Author(s):  
Sophie C. Payne ◽  
Nicole M. Wiedmann ◽  
Calvin D. Eiber ◽  
Agnes W. Wong ◽  
Philipp Senn ◽  
...  

Bioelectronic medical devices are well established and widely used in the treatment of urological dysfunction. Approved targets include the sacral S3 spinal root and posterior tibial nerve, but an alternate target is the group of pelvic splanchnic nerves, as these contain sacral visceral sensory and autonomic motor pathways that coordinate storage and voiding functions of the bladder. Here, we developed a device suitable for long-term use in an awake rat model to study electrical neuromodulation of the pelvic nerve (homolog of the human pelvic splanchnic nerves). In male Sprague-Dawley rats, custom planar four-electrode arrays were implanted over the distal end of the pelvic nerve, close to the major pelvic ganglion. Electrically evoked compound action potentials (ECAPs) were reliably detected under anesthesia and in chronically implanted, awake rats up to 8 weeks post-surgery. ECAP waveforms showed three peaks, with latencies that suggested electrical stimulation activated several subpopulations of myelinated A-fiber and unmyelinated C-fiber axons. Chronic implantation of the array did not impact on voiding evoked in awake rats by continuous cystometry, where void parameters were comparable to those published in naïve rats. Electrical stimulation with chronically implanted arrays also induced two classes of bladder pressure responses detected by continuous flow cystometry in awake rats: voiding contractions and non-voiding contractions. No evidence of tissue pathology produced by chronically implanted arrays was detected by immunohistochemical visualization of markers for neuronal injury or noxious spinal cord activation. These results demonstrate a rat pelvic nerve electrode array that can be used for preclinical development of closed loop neuromodulation devices targeting the pelvic nerve as a therapy for neuro-urological dysfunction.


NeuroImage ◽  
2020 ◽  
Vol 220 ◽  
pp. 117094
Author(s):  
Yikang Liu ◽  
Pablo D. Perez ◽  
Zilu Ma ◽  
Zhiwei Ma ◽  
David Dopfel ◽  
...  

2020 ◽  
Vol 6 (5) ◽  
pp. 916-921 ◽  
Author(s):  
Andrea M. Sartori ◽  
Martin E. Schwab ◽  
Thomas M. Kessler
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document