Neurophysiological Correlates of Nociceptive Heterosynaptic Long-Term Potentiation in Humans

2010 ◽  
Vol 103 (4) ◽  
pp. 2107-2113 ◽  
Author(s):  
Emanuel N. van den Broeke ◽  
Clementina M. van Rijn ◽  
José A. Biurrun Manresa ◽  
Ole K. Andersen ◽  
Lars Arendt-Nielsen ◽  
...  

Long-term potentiation (LTP) is a cellular model of synaptic plasticity and reflects an increase of synaptic strength. LTP is also present in the nociceptive system and is believed to be one of the key mechanisms involved in the manifestations of chronic pain. LTP manifested as an increased response in pain perception can be induced in humans using high-frequency electrical stimulation (HFS). The aim of this study was to induce spinal heterosynaptic LTP using HFS and investigate its heterotopic effects on event-related potentials (ERPs) to repeated nonpainful cutaneous stimuli as a possible electrophysiological cortical correlate of sensitization. Twenty-two healthy subjects were randomly assigned to one of the two experimental conditions: HFS and control stimulation. Before and after the stimulation, both conditions received heterotopic mechanical (pinprick) and paired nonpainful electrical test stimuli to quantify and confirm the effects of HFS on the behavioral level. ERPs to paired nonpainful electrical stimulation were measured simultaneously. Conditioning HFS resulted in significant heterotopic effects after 30 min, including increased perceived intensity in response to (pinprick) mechanical and paired nonpainful electrical stimulation compared with control. The paired nonpainful electrical stimuli were accompanied by significantly enhanced responses regarding the ERP N1-P2 peak-to-peak and P300 amplitude compared with control. These findings suggest that HFS is capable of producing heterosynaptic spinal LTP that can be measured not only behaviorally but also using ERPs.

2007 ◽  
Vol 97 (3) ◽  
pp. 2559-2563 ◽  
Author(s):  
Niels Hansen ◽  
Thomas Klein ◽  
Walter Magerl ◽  
Rolf-Detlef Treede

Long-term potentiation of human pain perception (nociceptive LTP) to single electrical test stimuli was induced by high-frequency stimulation (HFS) of cutaneous nociceptive afferents. Numerical pain ratings and a list of sensory pain descriptors disclosed the same magnitude of nociceptive LTP (23% increase for >60 min, P < 0.001), whereas affective pain descriptors were not significantly enhanced. Factor analysis of the sensory pain descriptors showed that facilitation was restricted to two factors characterized by hot and burning (+41%) and piercing and stinging (+21%, both P < 0.01), whereas a factor represented by throbbing and beating was not significantly increased (+9%, P = 0.47). The increased perception of the burning pain quality for >1 h after HFS is interpreted as a LTP-like facilitation of the conditioned cutaneous C-fiber pathway. Additionally, the increase of the stinging pain quality supplied evidence for facilitation of a sharpness-sensitive Aδ-fiber pathway.


1999 ◽  
Vol 82 (4) ◽  
pp. 2024-2028 ◽  
Author(s):  
Hongyan Wang ◽  
John J. Wagner

The activity history of a given neuron has been suggested to influence its future responses to synaptic input in one prominent model of experience-dependent synaptic plasticity proposed by Bienenstock, Cooper, and Munro (BCM theory). Because plasticity of synaptic plasticity (i.e., metaplasticity) is similar in concept to aspects of the BCM proposal, we have tested the possibility that a form of metaplasticity induced by a priming stimulation protocol might exhibit BCM-like characteristics. CA1 field excitatory postsynaptic potentials (EPSPs) obtained from rat hippocampal slices were used to monitor synaptic responses before and after conditioning stimuli (3–100 Hz) of the Schaffer collateral inputs. A substantial rightward shift (>5-fold) in the frequency threshold between long-term depression (LTD) and long-term potentiation (LTP) was observed <1 h after priming. This change in the LTD/P crossover point occurred at both primed and unprimed synaptic pathways. These results provide new support for the existence of a rapid, heterosynaptic, experience-dependent mechanism that is capable of modifying the synaptic plasticity phenomena that are commonly proposed to be important for developmental and learning/memory processes in the brain.


1994 ◽  
Vol 71 (6) ◽  
pp. 2552-2556 ◽  
Author(s):  
Z. Xiang ◽  
A. C. Greenwood ◽  
E. W. Kairiss ◽  
T. H. Brown

1. The quantal mechanism underlying the expression of long-term potentiation (LTP) was studied in the mossy-fiber (mf) synapses of the rat hippocampus. Whole-cell recordings were used to measure the excitatory postsynaptic currents (EPSCs) before and after LTP induction in brain slices maintained at 31 +/- 1 degrees C. 2. Evoked EPSCs were recorded from 473 CA3 pyramidal neurons. The mf synapses were stimulated using paired pulses (40-ms interpulse interval) repeated every 2–10 s. At least 400 pairs of mf responses were obtained before and during the expression of LTP, which was produced by high-frequency (100 Hz) mf stimulation. Sufficiently stationary data were obtained from five neurons that exhibited LTP and that also satisfied strict criteria and procedures that are necessary for eliciting and identifying unitary mf responses. 3. Three independent lines of evidence implicated a presynaptic component to the mechanism underlying mf LTP. The first was based on a graphical version of the classical method of variance. The graphical variance (GV) method was evaluated by clamping the cell at two different holding potentials during paired-pulse facilitation (PPF). The results indicated that the GV method can distinguish changes in mean quantal content m and mean quantal size q in rat mf synapses. The same analysis, when applied to PPF before and after LTP induction, indicated that both result from an increase in m. 4. The second line of evidence was based on the classical method of failures. Consistent with the inference that mf LTP is due to an increase in m, there was a statistically significant reduction in the number of quantal release failures.(ABSTRACT TRUNCATED AT 250 WORDS)


2006 ◽  
Vol 96 (6) ◽  
pp. 3551-3555 ◽  
Author(s):  
Thomas Klein ◽  
Walter Magerl ◽  
Rolf-Detlef Treede

As in neocortex and hippocampus, neurons in the dorsal horn of the spinal cord develop long-term potentiation of synaptic efficacy (LTP) on high-frequency stimulation (HFS) of their afferent input, although how long LTP lasts in this nociceptive relay nucleus has not yet been addressed. Here we studied neurogenic hyperalgesia, a perceptual correlate of nociceptive LTP, in 13 healthy subjects, after HFS (5 × 1 s at 100 Hz) of superficial cutaneous afferents. HFS led to a mean upward shift of the stimulus–response function for pinprick-evoked pain (punctate mechanical hyperalgesia) in all subjects by a factor of 2.5 ( P < 0.001) that lasted undiminished for the initial 1-h observation period. Follow-up tests until the next day revealed that this type of neurogenic hyperalgesia decayed with a t1/2 of 3.3 h (99% CI: 3.1–3.5 h) and disappeared completely within 25.4 h (99% CI: 20.4–31.6 h). Touch-evoked pain (dynamic mechanical allodynia) developed in eight of 13 subjects, decayed with a t1/2 of 2.9 h from the maximum and disappeared within 9.3 h. These findings suggest that a single HFS session induces nociceptive LTP in healthy subjects that corresponds to early-LTP (LTP1), implying primarily posttranslational mechanisms for this type of plasticity of human pain perception.


2017 ◽  
Vol 1668 ◽  
pp. 20-27 ◽  
Author(s):  
Khadijeh Esmaeilpour ◽  
Vahid Sheibani ◽  
Mohammad Shabani ◽  
Javad Mirnajafi-Zadeh

Sign in / Sign up

Export Citation Format

Share Document