REGULATION OF POSTURE IN INTACT AND DECEREBRATE CAT: I. CEREBELLUM, RETICULAR FORMATION, VESTIBULAR NUCLEI

1953 ◽  
Vol 16 (5) ◽  
pp. 451-463 ◽  
Author(s):  
James M. Sprague ◽  
William W. Chambers
1987 ◽  
Vol 57 (4) ◽  
pp. 1118-1129 ◽  
Author(s):  
F. R. Morales ◽  
J. K. Engelhardt ◽  
P. J. Soja ◽  
A. E. Pereda ◽  
M. H. Chase

It is well established that cholinergic agonists, when injected into the pontine reticular formation in cats, produce a generalized suppression of motor activity (1, 3, 6, 14, 18, 27, 33, 50). The responsible neuronal mechanisms were explored by measuring ventral root activity, the amplitude of the Ia-monosynaptic reflex, and the basic electrophysiological properties of hindlimb motoneurons before and after carbachol was microinjected into the pontine reticular formation of decerebrate cats. Intrapontine microinjections of carbachol (0.25-1.0 microliter, 16 mg/ml) resulted in the tonic suppression of ventral root activity and a decrease in the amplitude of the Ia-monosynaptic reflex. An analysis of intracellular records from lumbar motoneurons during the suppression of motor activity induced by carbachol revealed a considerable decrease in input resistance and membrane time constant as well as a reduction in motoneuron excitability, as evidenced by a nearly twofold increase in rheobase. Discrete inhibitory postsynaptic potentials were also observed following carbachol administration. The changes in motoneuron properties (rheobase, input resistance, and membrane time constant), as well as the development of discrete inhibitory postsynaptic potentials, indicate that spinal cord motoneurons were postsynaptically inhibited following the pontine administration of carbachol. In addition, the inhibitory processes that arose after carbachol administration in the decerebrate cat were remarkably similar to those that are present during active sleep in the chronic cat. These findings suggest that the microinjection of carbachol into the pontine reticular formation activates the same brain stem-spinal cord system that is responsible for the postsynaptic inhibition of alpha-motoneurons that occurs during active sleep.


1995 ◽  
Vol 5 (3) ◽  
pp. 223-228
Author(s):  
Robert H. Schor ◽  
Bill J. Yates

This study examines the response of neurons in the medullary reticular formation of the decerebrate cat to sinusoidal yaw rotations in the plane of the horizontal semicircular canals. Responsive neurons that could be antidromically activated from the spinal cord appeared to be less sensitive to the rotary stimulus than the rest of the population of responsive neurons. Most neurons had response dynamics similar to those of semicircular canal afferents.


1996 ◽  
Vol 75 (3) ◽  
pp. 1242-1249 ◽  
Author(s):  
V. J. Wilson ◽  
H. Ikegami ◽  
R. H. Schor ◽  
D. B. Thomson

1. In decerebrate cats with intact cerebellums, we studied the responses of neurons in the caudal areas of the vestibular nuclei to natural vestibular stimulation in vertical planes and to neck rotation. The activity of most neurons was recorded in the caudal half of the descending nucleus. 2. One goal of our experiments was to compare the dynamic and spatial properties of responses to sinusoidal vestibular stimulation with those seen in previous experiments in which the caudal cerebellar vermis, including the nodulus and uvula, was removed. This part of the cerebellum receives vestibular input and projects to the caudal areas of the vestibular nuclei, suggesting that it could influence responses to stimulation of the labyrinth. 3. As in our previous experiments, most neurons could be classified as receiving predominant input either from the otoliths or from one vertical semicircular canal. When mean gain and phase and response vector orientations were compared, there were no obvious differences between the behavior of neurons in the partially decerebellate preparation and the one with the cerebellum intact, demonstrating that in the decerebrate cat the nodulus and uvula have little or no influence on the processing of vertical vestibular input in this region of the vestibular nuclei. 4. Only 23 of 74 (31%) of neurons tested responded to neck rotation. This contrasts with the much larger fractions that respond to this stimulus in Deiters' nucleus and in the rostral descending nucleus. We also recorded from neurons near the vestibular nuclei, mainly in the external cuneate nucleus. All of them (9 of 9) responded to neck rotation. 5. Responses to neck rotation also differed in their dynamics from those found more rostrally in the vestibular nuclei. Dynamics of more rostral neurons resemble those of neck muscle spindles, as do those of external cuneate neurons. The dynamics of caudal vestibular neurons, on the other hand, have a steeper gain slope and more advanced phases than do those of neurons in the more rostral vestibular nuclei. This suggests the possibility of involvement of additional receptors in the production of these responses. 6. In the more rostral vestibular nuclei, responses to vestibular and neck rotation are most often antagonistic, so that head rotation results in little or no response. This is not the case in the caudal areas of the vestibular nuclei, where less than half the neurons tested displayed antagonistic behavior. Further experiments are required to put the neck projection to the caudal vestibular nuclei in a functional context.


1995 ◽  
Vol 74 (1) ◽  
pp. 428-436 ◽  
Author(s):  
K. Endo ◽  
D. B. Thomson ◽  
V. J. Wilson ◽  
T. Yamaguchi ◽  
B. J. Yates

1. To investigate the type of vestibular signals that neurons in the caudal parts of the vestibular nuclei transmit to the cerebellum and spinal cord, we studied their responses to natural vestibular stimulation in vertical planes in decerebrate cats with the caudal cerebellum removed. Most neurons were in the caudal half of the descending vestibular nucleus, the remainder at corresponding levels of the medial nucleus or the medial-descending border. 2. Dynamics of the responses of spontaneously firing neurons were studied with sinusoidal tilts delivered at 0.05-1 Hz near the plane of body rotation that produced maximal modulation of the neuron's activity (response vector orientation). For most neurons the predominant vestibular input could be identified as coming from otolith organs (46%) or vertical semicircular canals (37%). Some neurons had otolith+canal convergence (9%) and others either had such converging input or some other form of central processing (8%). 3. Gain and phase of the responses of otolith neurons were comparable with values obtained in earlier studies on Deiters' nucleus and the rostral descending nucleus. Many canal neurons had a steeper gain slope and more advanced phase than observed previously for more rostral neurons. This may be due to more irregular afferent input to many neurons or to the absence of the vestibulocerebellum. 4. Response vector orientations of canal neurons were closely bunched near the planes of the ipsilateral vertical canals. The small number of contralaterally projecting vectors showed evidence of convergence between the two contralateral vertical canals. As is the case elsewhere in the vestibular nuclei, there was no evidence of convergence from bilateral vertical canals. Response vector orientations of otolith neurons were restricted to the roll quadrants; the majority pointed ipsilaterally. 5. Antidromic stimulation with an electrode in the restiform body or with several electrodes in the dorsal half of the white matter of the upper cervical cord was used to identify neurons projecting to the cerebellum and spinal cord, respectively. A substantial number of spontaneously firing neurons projected to the cerebellum, but there were few spontaneously active vestibulospinal neurons. The properties of the vestibular input to cerebellar-projecting neurons were the same as those of the population as a whole, but the effect of tilt on vestibulospinal neurons appeared weak or absent. 6. Many neurons were inhibited by stimulation of the restiform body. We suggest that this is mainly due to stimulation of the axons of vestibulocerebellar Purkinje cells. 7. Our results demonstrate a robust vertical vestibular input to the caudal parts of the vestibular nuclei.(ABSTRACT TRUNCATED AT 400 WORDS)


1975 ◽  
Vol 38 (6) ◽  
pp. 1421-1435 ◽  
Author(s):  
B. W. Peterson ◽  
C. Abzug

In one series of experiments, vestibular neurons that could be activated antidromically by stimulation of the contralateral medial reticular formation were studied with extracellular recording in cats under pentobarbital anesthesia. These neurons were found in all of the four main vestibular nuclei, but were less prevalent in dorsal Deiters' nucleus and in the central region of the superior vestibular nucleus than elsewhere. Regions of the pontine and medullary reticular formation from which neurons in different vestibular nuclei were activated corresponded to the pattern of vestibuloreticular projections described by neuroanatomists. 2. Latencies of antidromic responses to stimulation of the contralateral reticular formation ranged from 0.6 to over 3 ms, indicating a relatively slow transfer of activity from vestibular nuclei to reticular formation.


2014 ◽  
Vol 111 (12) ◽  
pp. 2423-2432 ◽  
Author(s):  
Milad S. Arshian ◽  
Candace E. Hobson ◽  
Michael F. Catanzaro ◽  
Daniel J. Miller ◽  
Sonya R. Puterbaugh ◽  
...  

The vestibular nuclei integrate information from vestibular and proprioceptive afferents, which presumably facilitates the maintenance of stable balance and posture. However, little is currently known about the processing of sensory signals from the limbs by vestibular nucleus neurons. This study tested the hypothesis that limb movement is encoded by vestibular nucleus neurons and described the changes in activity of these neurons elicited by limb extension and flexion. In decerebrate cats, we recorded the activity of 70 vestibular nucleus neurons whose activity was modulated by limb movements. Most of these neurons (57/70, 81.4%) encoded information about the direction of hindlimb movement, while the remaining neurons (13/70, 18.6%) encoded the presence of hindlimb movement without signaling the direction of movement. The activity of many vestibular nucleus neurons that responded to limb movement was also modulated by rotating the animal's body in vertical planes, suggesting that the neurons integrated hindlimb and labyrinthine inputs. Neurons whose firing rate increased during ipsilateral ear-down roll rotations tended to be excited by hindlimb flexion, whereas neurons whose firing rate increased during contralateral ear-down tilts were excited by hindlimb extension. These observations suggest that there is a purposeful mapping of hindlimb inputs onto vestibular nucleus neurons, such that integration of hindlimb and labyrinthine inputs to the neurons is functionally relevant.


1999 ◽  
Vol 81 (6) ◽  
pp. 2597-2611 ◽  
Author(s):  
Y. Izawa ◽  
Y. Sugiuchi ◽  
Y. Shinoda

Neural organization from the superior colliculus to motoneurons in the horizontal oculomotor system of the cat. The neural organization of the superior colliculus (SC) projection to horizontal ocular motoneurons was analyzed in anesthetized cats using intracellular recording and transneuronal labeling. Intracellular responses to SC stimulation were analyzed in lateral rectus (LR) and medial rectus (MR) motoneurons and internuclear neurons in the abducens nucleus (AINs). LR motoneurons and AINs received excitation from the contralateral SC and inhibition from the ipsilateral SC. The shortest excitation (0.9–1.9 ms) and inhibition (1.4–2.4 ms) were mainly disynaptic from the SC and were followed by tri- and polysynaptic responses evoked with increasing stimuli or intensity. All MR motoneurons received excitation from the ipsilateral SC, whereas none of them received any short-latency inhibition from the contralateral SC, but some received excitation. The latency of the ipsilateral excitation in MR motoneurons (1.7–2.8 ms) suggested that this excitation was trisynaptic via contralateral AINs, because conditioning SC stimulation spatially facilitated trisynaptic excitation from the ipsilateral vestibular nerve. To locate interneurons mediating the disynaptic SC inputs to LR motoneurons, last-order premotor neurons were labeled transneuronally after injecting wheat germ agglutinin–conjugated horseradish peroxidase into the abducens nerve, and tectoreticular axon terminals were labeled after injecting dextran-biotin into the ipsilateral or contralateral SC in the same preparations. Transneuronally labeled neurons were mainly distributed ipsilaterally in the paramedian pontine reticular formation (PPRF) rostral to retrogradely labeled LR motoneurons and the vestibular nuclei, and contralaterally in the paramedian pontomedullary reticular formation (PPMRF) caudomedial to the abducens nucleus and the vestibular nuclei. Among the last-order premotor neuron areas, orthogradely labeled tectoreticular axon terminals were observed only in the PPRF and the PPMRF contralateral to the injected SC and seemed to make direct contacts with many of the labeled last-order premotor neurons in the PPRF and the PPMRF. These morphological results confirmed that the main excitatory and inhibitory connections from the SC to LR motoneurons are disynaptic and that the PPRF neurons that receive tectoreticular axon terminals from the contralateral SC terminate on ipsilateral LR motoneurons, whereas the PPMRF neurons that receive tectoreticular axon terminals from the contralateral SC terminate on contralateral LR motoneurons.


Sign in / Sign up

Export Citation Format

Share Document