Quantitative studies of single-cell properties in monkey striate cortex. I. Spatiotemporal organization of receptive fields

1976 ◽  
Vol 39 (6) ◽  
pp. 1288-1319 ◽  
Author(s):  
P. H. Schiller ◽  
B. L. Finlay ◽  
S. F. Volman

1. The properties of single cells in striate cortex of the rhesus monkey, representing the visual field 2 degrees -5 degrees from the fovea, were examined quantitatively with stationary and moving stimuli. Three distinct classes of cells were identified: S type, CX type, and T type. 2. S-type cells were defined as those oriented cells which to the optimal direction of movement in their receptive fields exhibited one or more spatially separate subfields within each of which a response was obtained to either a light or dark edge, but not to both. Several different types of S-cells were distinguished: a) S1-type cells for which moving edges revealed a single excitatory area within which a response was elicited by either a light or a dark edge but not by both. Most of these cells were unidirectional. b) S2-type cells for which moving edges revealed two spatially separate response areas, one of which was excited by a light edge and the other by a dark edge. Both regions responded to the same direction of movement. c) S3-type cells which had two response areas, one of which was excited by a stimulus moving in one direction (at right angles to the axis of orientation) and the other, of opposite contrast, which responded in the opposite direction, d) S4-type cells which to one direction of movement showed two spatially separate regions sensitive to a light and dark edge and which in the other direction of movement had only one responsive area (either light or dark). e) Cells which had multiple spatially separate subfields (S5-7 types). 3. CX-type cells were defined as those oriented cells which in their receptive fields exhibited no spatial separation for light- and dark-edge responses; they discharged to both edges in the same direction of movement and in the same spatial area. Flashing stimuli elicited both on and off responses throughout the receptive field. CX-type cells were predominantly of two types: those which were selective for direction of stimulus movement and those which were not. 4. A third class of cells (T-type) were those which were excited by only one sign of contrast change and responded in a sustained fashion even when there was no contour within the receptive field. These cells were poorly or not at all oriented; some of them were selective to wavelength. 5. Quantitative comparisons showed the following differences between S-type and CX-type cells: a) S-type cells had smaller receptive fields than CX-type cells but the populations over-lapped considerably. Receptive-field size was smallest in layer 4c. In all other layers S-type cells had the same size fields. CX-type cells, by contrast, tended to have larger fields in layer 5-6 than 2-3. b) The spatial separation between light and dark response areas was the best criterion for distinguishing S-type and CX-type cells. The distribution of this measure disclosed two populations of cells with relatively limited overlap. c) In layers 2 and 3, both S-type and CX-type cells had low spontaneous activity…

Of the many possible functions of the macaque monkey primary visual cortex (striate cortex, area 17) two are now fairly well understood. First, the incoming information from the lateral geniculate bodies is rearranged so that most cells in the striate cortex respond to specifically oriented line segments, and, second, information originating from the two eyes converges upon single cells. The rearrangement and convergence do not take place immediately, however: in layer IVc, where the bulk of the afferents terminate, virtually all cells have fields with circular symmetry and are strictly monocular, driven from the left eye or from the right, but not both; at subsequent stages, in layers above and below IVc, most cells show orientation specificity, and about half are binocular. In a binocular cell the receptive fields in the two eyes are on corresponding regions in the two retinas and are identical in structure, but one eye is usually more effective than the other in influencing the cell; all shades of ocular dominance are seen. These two functions are strongly reflected in the architecture of the cortex, in that cells with common physiological properties are grouped together in vertically organized systems of columns. In an ocular dominance column all cells respond preferentially to the same eye. By four independent anatomical methods it has been shown that these columns have the form of vertically disposed alternating left-eye and right-eye slabs, which in horizontal section form alternating stripes about 400 μm thick, with occasional bifurcations and blind endings. Cells of like orientation specificity are known from physiological recordings to be similarly grouped in much narrower vertical sheeet-like aggregations, stacked in orderly sequences so that on traversing the cortex tangentially one normally encounters a succession of small shifts in orientation, clockwise or counterclockwise; a 1 mm traverse is usually accompanied by one or several full rotations through 180°, broken at times by reversals in direction of rotation and occasionally by large abrupt shifts. A full complement of columns, of either type, left-plus-right eye or a complete 180° sequence, is termed a hypercolumn. Columns (and hence hypercolumns) have roughly the same width throughout the binocular part of the cortex. The two independent systems of hypercolumns are engrafted upon the well known topographic representation of the visual field. The receptive fields mapped in a vertical penetration through cortex show a scatter in position roughly equal to the average size of the fields themselves, and the area thus covered, the aggregate receptive field, increases with distance from the fovea. A parallel increase is seen in reciprocal magnification (the number of degrees of visual field corresponding to 1 mm of cortex). Over most or all of the striate cortex a movement of 1-2 mm, traversing several hypercolumns, is accompanied by a movement through the visual field about equal in size to the local aggregate receptive field. Thus any 1-2 mm block of cortex contains roughly the machinery needed to subserve an aggregate receptive field. In the cortex the fall-off in detail with which the visual field is analysed, as one moves out from the foveal area, is accompanied not by a reduction in thickness of layers, as is found in the retina, but by a reduction in the area of cortex (and hence the number of columnar units) devoted to a given amount of visual field: unlike the retina, the striate cortex is virtually uniform morphologically but varies in magnification. In most respects the above description fits the newborn monkey just as well as the adult, suggesting that area 17 is largely genetically programmed. The ocular dominance columns, however, are not fully developed at birth, since the geniculate terminals belonging to one eye occupy layer IVc throughout its length, segregating out into separate columns only after about the first 6 weeks, whether or not the animal has visual experience. If one eye is sutured closed during this early period the columns belonging to that eye become shrunken and their companions correspondingly expanded. This would seem to be at least in part the result of interference with normal maturation, though sprouting and retraction of axon terminals are not excluded.


1995 ◽  
Vol 74 (5) ◽  
pp. 2100-2125 ◽  
Author(s):  
D. M. Snodderly ◽  
M. Gur

1. In alert macaque monkeys, multiunit activity is encountered in an alternating sequence of silent and spontaneously active zones as an electrode is lowered through the striate cortex (V1). 2. Individual neurons that are spontaneously active in the dark usually have a maintained discharge in the light. Because both types of discharge occur in the absence of deliberate stimulation, we call them the "ongoing" activity. The zones with ongoing activity correspond to the cytochrome oxidase (CytOx)-rich geniculorecipient layers 4A, 4C, and 6, whereas the adjacent layers 2/3, 4B, and 5 have little ongoing activity. 3. The widths of receptive field activating regions (ARs) are positively correlated with the cells' ongoing activity. Cells with larger ARs are preferentially located in the CytOx-rich (input) layers, and many are unselective for stimulus orientation. However, approximately 90% of the cells in the silent layers are orientation selective, and they often have small ARs. 4. The laminar distribution of selectivity for orientation and direction of movement in alert animals is consistent with earlier results from anesthetized animals, but the laminar distribution of AR widths differs. In alert macaques, the ARs of direction-selective cells in layer 4B and of orientation-selective cells in layer 5 are among the smallest in V1. 5. Our findings indicate that the input layers of V1 (4A, 4C, and 6) have a diversity of AR widths, including large ones. Cortical processing produces receptive fields in some of the output layers (4B and 5) that are restricted to small ARs with high resolution of spatial position. These results imply potent lateral and/or interlaminar interactions in alert animals in early cortical processing. The diversity of AR widths generated in V1 may contribute to detection of fine detail in the presence of contrasting backgrounds--the early stages of figure-ground discrimination.


1993 ◽  
Vol 90 (23) ◽  
pp. 11142-11146 ◽  
Author(s):  
S Bisti ◽  
C Trimarchi

Prenatal unilateral enucleation in mammals causes an extensive anatomical reorganization of visual pathways. The remaining eye innervates the entire extent of visual subcortical and cortical areas. Electrophysiological recordings have shown that the retino-geniculate connections are retinotopically organized and geniculate neurones have normal receptive field properties. In area 17 all neurons respond to stimulation of the remaining eye and retinotopy, orientation columns, and direction selectivity are maintained. The only detectable change is a reduction in receptive field size. Are these changes reflected in the visual behavior? We studied visual performance in cats unilaterally enucleated 3 weeks before birth (gestational age at enucleation, 39-42 days). We tested behaviorally the development of visual acuity and, in the adult, the extension of the visual field and the contrast sensitivity. We found no difference between prenatal monocularly enucleated cats and controls in their ability to orient to targets in different positions of the visual field or in their visual acuity (at any age). The major difference between enucleated and control animals was in contrast sensitivity:prenatal enucleated cats present a loss in sensitivity for gratings of low spatial frequency (below 0.5 cycle per degree) as well as a slight increase in sensitivity at middle frequencies. We conclude that prenatal unilateral enucleation causes a selective change in the spatial performance of the remaining eye. We suggest that this change is the result of a reduction in the number of neurones with large receptive fields, possibly due to a severe impairment of the Y system.


1984 ◽  
Vol 52 (3) ◽  
pp. 488-513 ◽  
Author(s):  
D. J. Felleman ◽  
J. H. Kaas

Response properties of single neurons in the middle temporal visual area (MT) of anesthetized owl monkeys were determined and quantified for flashed and moving bars of light under computer control for position, orientation, direction of movement, and speed. Receptive-field sizes, ranging from 4 to 25 degrees in width, were considerably larger than receptive fields with corresponding eccentricities in the striate cortex. Neurons were highly binocular with most cells equally or nearly equally activated by either eye. Neurons varied in selectivity for axis and direction of moving bars. Some neurons demonstrated little or no selectivity, others were bidirectional on a single axis, while the largest group was highly selective for direction with little or no response to bar movement opposite to the preferred direction. Over 70% of neurons were classified as highly selective and 90% showed some preference for direction and/or axis of stimulus movement. Neurons typically responded to bar movement only over a restricted range of velocities. The majority of neurons responded best to a particular velocity within the 5-60 degrees/s range, with marked attenuation of the response for velocities greater or less than the preferred. Some neurons failed to show significant response attenuation even at the lowest tested velocity, while other neurons preferred velocities of 100 degrees/s or more and failed to attenuate to the highest velocities. Response magnitude varied with stimulus dimensions. Increasing the length of the moving bar typically increased the magnitude of the response slightly until the stimulus exceeded the receptive-field borders. Other neurons responded less to increases in bar length within the excitatory receptive field. Neurons preferred narrow bars less than 1 degree in width, and marked reductions in responses characteristically occurred with wider stimuli. Moving patterns of randomly placed small dots were often as effective as or more effective than single bars in activating neurons. Selectivity for direction of movement remained for the dot pattern. for the dot pattern. Poststimulus time (PST) histograms of responses to bars flashed at a series of 21 different positions across the receptive field, in the "response-plane" format, indicated a spatially and temporally homogeneous receptive-field structure for nearly all neurons. Cells characteristically showed transient excitation at both stimulus onset and offset for all effective stimulus locations. Some cells responded mainly at bright stimulus onset or offset.


2005 ◽  
Vol 93 (6) ◽  
pp. 3537-3547 ◽  
Author(s):  
Chong Weng ◽  
Chun-I Yeh ◽  
Carl R. Stoelzel ◽  
Jose-Manuel Alonso

Each point in visual space is encoded at the level of the thalamus by a group of neighboring cells with overlapping receptive fields. Here we show that the receptive fields of these cells differ in size and response latency but not at random. We have found that in the cat lateral geniculate nucleus (LGN) the receptive field size and response latency of neighboring neurons are significantly correlated: the larger the receptive field, the faster the response to visual stimuli. This correlation is widespread in LGN. It is found in groups of cells belonging to the same type (e.g., Y cells), and of different types (i.e., X and Y), within a specific layer or across different layers. These results indicate that the inputs from the multiple geniculate afferents that converge onto a cortical cell (approximately 30) are likely to arrive in a sequence determined by the receptive field size of the geniculate afferents. Recent studies have shown that the peak of the spatial frequency tuning of a cortical cell shifts toward higher frequencies as the response progresses in time. Our results are consistent with the idea that these shifts in spatial frequency tuning arise from differences in the response time course of the thalamic inputs.


1996 ◽  
Vol 75 (6) ◽  
pp. 2441-2450 ◽  
Author(s):  
D. D. Rasmusson

1. Single neurons in the ventroposterior lateral thalamic nucleus were studied in 10 anesthetized raccoons, 4 of which had undergone amputation of the fourth digit 4-5 mo before recording. Neurons with receptive fields on the glabrous skin of a forepaw digit were examined in response to electrical stimulation of the “on-focus” digit that contained the neuron's receptive field and stimulation of an adjacent, “off-focus” digit. 2. In normal raccoons all neurons responded to on-focus stimulation with an excitation at a short latency (mean 13 ms), whereas only 63% of the neurons responded to off-focus digit stimulation. The off-focus responses had a longer latency (mean 27.2 ms) and a higher threshold than the on-focus responses (800 and 452 microA, respectively). Only 3 of 32 neurons tested with off-focus stimulation had both a latency and a threshold within the range of on-focus values. Inhibition following the excitation was seen in the majority of neurons with both types of stimulation. 3. In the raccoons with digit removal, the region of the thalamus that had lost its major peripheral input (the “deafferented” region) was distinguished from the normal third and fifth digit regions on the basis of the sequence of neuronal receptive fields within a penetration and receptive field size as described previously. 4. Almost all of the neurons in the deafferented region (91%) were excited by stimulation of one or both adjacent digits. The average latency for these responses was shorter (15.3 ms) and the threshold was lower than was the case with off-focus stimulation in control animals. These values were not significantly different from the responses to on-focus stimulation in the animals with digit amputation. 5. These results confirm that reorganization of sensory pathways can be observed at the thalamic level. In addition to the changes in the somatotopic map that have been shown previously with the use of mechanical stimuli, the present paper demonstrates an improvement in several quantitative measures of single-unit responses. Many of these changes suggest that this reorganization could be explained by an increased effectiveness of preexisting, weak connections from the off-focus digits; however, the increase in the proportion of neurons responding to stimulation of adjacent digits may indicate that sprouting of new connections also occurs.


1994 ◽  
Vol 11 (4) ◽  
pp. 703-720 ◽  
Author(s):  
Ming Sun ◽  
A. B. Bonds

AbstractThe two-dimensional organization of receptive fields (RFs) of 44 cells in the cat visual cortex and four cells from the cat LGN was measured by stimulation with either dots or bars of light. The light bars were presented in different positions and orientations centered on the RFs. The RFs found were arbitrarily divided into four general types: Punctate, resembling DOG filters (11%); those resembling Gabor filters (9%); elongate (36%); and multipeaked-type (44%). Elongate RFs, usually found in simple cells, could show more than one excitatory band or bifurcation of excitatory regions. Although regions inhibitory to a given stimulus transition (e.g. ON) often coincided with regions excitatory to the opposite transition (e.g. OFF), this was by no means the rule. Measurements were highly repeatable and stable over periods of at least 1 h. A comparison between measurements made with dots and with bars showed reasonable matches in about 40% of the cases. In general, bar-based measurements revealed larger RFs with more structure, especially with respect to inhibitory regions. Inactivation of lower cortical layers (V-VI) by local GABA injection was found to reduce sharpness of detail and to increase both receptive-field size and noise in upper layer cells, suggesting vertically organized RF mechanisms. Across the population, some cells bore close resemblance to theoretically proposed filters, while others had a complexity that was clearly not generalizable, to the extent that they seemed more suited to detection of specific structures. We would speculate that the broadly varying forms of cat cortical receptive fields result from developmental processes akin to those that form ocular-dominance columns, but on a smaller scale.


1999 ◽  
Vol 81 (2) ◽  
pp. 825-834 ◽  
Author(s):  
Iran Salimi ◽  
Thomas Brochier ◽  
Allan M. Smith

Neuronal activity in somatosensory cortex of monkeys using a precision grip. I. Receptive fields and discharge patterns. Three adolescent Macaca fascicularis monkeys weighing between 3.5 and 4 kg were trained to use a precision grip to grasp a metal tab mounted on a low friction vertical track and to lift and hold it in a 12- to 25-mm position window for 1 s. The surface texture of the metal tab in contact with the fingers and the weight of the object could be varied. The activity of 386 single cells with cutaneous receptive fields contacting the metal tab were recorded in Brodmann’s areas 3b, 1, 2, 5, and 7 of the somatosensory cortex. In this first of a series of papers, we describe three types of discharge pattern, the receptive-field properties, and the anatomic distribution of the neurons. The majority of the receptive fields were cutaneous and covered less than one digit, and a χ2 test did not reveal any significant differences in the Brodmann’s areas representing the thumb and index finger. Two broad categories of discharge pattern cells were identified. The first category, dynamic cells, showed a brief increase in activity beginning near grip onset, which quickly subsided despite continued pressure applied to the receptive field. Some of the dynamic neurons responded to both skin indentation and release. The second category, static cells, had higher activity during the stationary holding phase of the task. These static neurons demonstrated varying degrees of sensitivity to rates of pressure change on the skin. The percentage of dynamic versus static cells was about equal for areas 3b, 2, 5, and 7. Only area 1 had a higher proportion of dynamic cells (76%). A third category was identified that contained cells with significant pregrip activity and included cortical cells with both dynamic or static discharge patterns. Cells in this category showed activity increases before movement in the absence of receptive-field stimulation, suggesting that, in addition to peripheral cutaneous input, these cells also receive strong excitation from movement-related regions of the brain.


1986 ◽  
Vol 55 (6) ◽  
pp. 1136-1152 ◽  
Author(s):  
C. L. Baker ◽  
M. S. Cynader

Responses of direction-selective neurons in cat striate cortex (area 17) were studied with flashed-bar stimuli. Spatial parameters of interactions within the receptive field giving rise to direction selectivity and of receptive-field subunits were quantitatively determined for the same cells and correlated. A bar stimulus flashed sequentially at two nearby locations in the receptive field produced direction-selective behavior comparable with that elicited by continuously moving stimuli. Each cell exhibited a characteristic optimal spatial displacement, Dopt, for which responses in the presumed preferred and null directions were maximally distinct. In all cases, Dopt was much smaller than the receptive-field size. The spatial structure of receptive fields in simple cells was studied using single narrow-bar stimuli flashed at different locations in the receptive field. The resulting line-weighting function exhibited alternating regions of ON and OFF responses having a characteristic spatial period or wavelength, lambda. Spatial subunit structure in complex cells was determined by flashing two bars simultaneously in the receptive field. The response as a function of bar separation was again a wavelike function having a spatial wavelength, lambda. Values of the optimal displacement for direction selectivity, Dopt, showed a clear relationship with the spatial wavelength, lambda, for a given unit. Dopt was also correlated to a somewhat lesser degree with receptive-field size. Generally, the ratio of Dopt to lambda was approximately 1/10 to 1/4, in agreement with theoretical predictions by Marr and Poggio. Taken together with the findings of Movshon et al., these results indicate a systematic relationship between Dopt and the spatial frequency of a sinusoidal grating, which is optimal for that cell. Such a relationship is consistent with the results of human psychophysical experiments on apparent motion.


1981 ◽  
Vol 45 (3) ◽  
pp. 397-416 ◽  
Author(s):  
J. F. Baker ◽  
S. E. Petersen ◽  
W. T. Newsome ◽  
J. M. Allman

1. The response properties of 354 single neurons in the medial (M), dorsomedial (DM), dorsolateral (DL), and middle temporal (MT) visual areas were studied quantitatively with bar, spot, and random-dot stimuli in chronically implanted owl monkeys with fixed gaze. 2. A directionality index was computed to compare the responses to stimuli in the optimal direction with the responses to the opposing direction of movement. The greater the difference between opposing directions, the higher the index. MT cells had much higher direction indices to moving bars than cells in DL, DM, and M. 3. A tuning index was computed for each cell to compare the responses to bars moving in the optimal direction, or flashed in the optimal orientation, with the responses in other directions or orientations within +/- 90 degrees. Cells in all four areas were more sharply tuned to the orientation of stationary flashed bars than to moving bars, although a few cells (9/92( were unresponsive in the absence of movement. DM cells tended to be more sharply tuned to moving bars than cells in the other areas. 4. Directionality in DM, DL, and MT was relatively unaffected by the use of single-spot stimuli instead of bars; tuning in all four areas was broader to spots than bars. 5. Moving arrays of randomly spaced spots were more strongly excitatory than bar stimuli for many neurons in MT (16/31 cells). These random-dot stimuli were also effective in M, but evoked no response or weak responses from most cells in DM and DL. 6. The best velocities of movement were usually in the range of 10-100 degrees/s, although a few cells (22/227), primarily in MT (14/69 cells), preferred higher velocities. 7. Receptive fields of neurons in all four areas were much larger than striate receptive fields. Eccentricity was positively correlated with receptive-field size (r = 0.62), but was not correlated with directionality index, tuning index, or best velocity. 8. The results support the hypothesis that there are specializations of function among the cortical visual areas.


Sign in / Sign up

Export Citation Format

Share Document