Convergence of hepatic osmoreceptive inputs on sodium-responsive units within the nucleus of the solitary tract of the rat

1985 ◽  
Vol 54 (2) ◽  
pp. 212-219 ◽  
Author(s):  
M. Kobashi ◽  
A. Adachi

Single-shock electrical stimulation of the hepatic branch of the vagus induced both facilitation and suppression in units within the nucleus of the solitary tract (NTS). Some units that were facilitated by electrical stimulation also increased their discharge rates during topical iontophoretic application of Na+, as well as portal infusion of hypertonic saline. Other facilitatory units produced opposite responses; their discharge rates decreased during topical iontophoretic application of Na+ and portal infusion of hypertonic saline. Some units that were suppressed by electrical stimulation also responded to the topical application of Na+ and portal infusion of hypertonic saline. The responses to these two different stimuli were positively correlated in some units but not in others. The evidence suggests that the units within the NTS that are responsive to hepatic osmosensitive primary afferents may serve a Na+-responsive function and may be important in integration within the NTS for isosmotic or isovolemic homeostasis.

1994 ◽  
Vol 266 (4) ◽  
pp. R1118-R1126 ◽  
Author(s):  
F. M. Boissonade ◽  
K. A. Sharkey ◽  
J. S. Davison

The aim of this study was to investigate neuronal activation in the dorsal vagal complex of the halothane-anesthetized ferret after peripheral emetic stimuli. Neuronal activity was studied by examining the distribution of the nuclear phosphoprotein Fos using immunohistochemistry. The emetic stimuli used were electrical stimulation of the supradiaphragmatic vagal communicating branch (SVCB) or intraduodenal injection of hypertonic saline. Electrical stimulation of the SVCB induced the densest Fos expression within the medial subnucleus of the nucleus of the solitary tract. After hypertonic saline injection, the greatest density of Fos-positive nuclei was observed within the area postrema and also in the medial subnucleus of the nucleus of the solitary tract. It was concluded that the emetic response to hypertonic saline involves neurons in both the area postrema and the nucleus of the solitary tract, especially the medial subnucleus, and that the medial subnucleus is important in the emetic response to SVCB stimulation.


Life ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 370
Author(s):  
Walter Magerl ◽  
Emanuela Thalacker ◽  
Simon Vogel ◽  
Robert Schleip ◽  
Thomas Klein ◽  
...  

Musculoskeletal pain is often associated with pain referred to adjacent areas or skin. So far, no study has analyzed the somatosensory changes of the skin after the stimulation of different underlying fasciae. The current study aimed to investigate heterotopic somatosensory crosstalk between deep tissue (muscle or fascia) and superficial tissue (skin) using two established models of deep tissue pain (namely focal high frequency electrical stimulation (HFS) (100 pulses of constant current electrical stimulation at 10× detection threshold) or the injection of hypertonic saline in stimulus locations as verified using ultrasound). In a methodological pilot experiment in the TLF, different injection volumes of hypertonic saline (50–800 µL) revealed that small injection volumes were most suitable, as they elicited sufficient pain but avoided the complication of the numbing pinprick sensitivity encountered after the injection of a very large volume (800 µL), particularly following muscle injections. The testing of fascia at different body sites revealed that 100 µL of hypertonic saline in the temporal fascia and TLF elicited significant pinprick hyperalgesia in the overlying skin (–26.2% and –23.5% adjusted threshold reduction, p < 0.001 and p < 0.05, respectively), but not the trapezius fascia or iliotibial band. Notably, both estimates of hyperalgesia were significantly correlated (r = 0.61, p < 0.005). Comprehensive somatosensory testing (DFNS standard) revealed that no test parameter was changed significantly following electrical HFS. The experiments demonstrated that fascia stimulation at a sufficient stimulus intensity elicited significant across-tissue facilitation to pinprick stimulation (referred hyperalgesia), a hallmark sign of nociceptive central sensitization.


2017 ◽  
Vol 10 (1) ◽  
pp. 116-125 ◽  
Author(s):  
D. Martínez-Vargas ◽  
A. Valdés-Cruz ◽  
V.M. Magdaleno-Madrigal ◽  
R. Fernández-Mas ◽  
S. Almazán-Alvarado

2002 ◽  
Vol 282 (4) ◽  
pp. H1278-H1287 ◽  
Author(s):  
Pedro Boscan ◽  
Julian F. R. Paton

We determined the activity of neurons within the nucleus of the solitary tract (NTS) after stimulation of the cornea and assessed whether this input affected the processing of baroreceptor and peripheral chemoreceptor inputs. In an in situ, unanesthetized decerebrate working heart-brain stem preparation of the rat, noxious mechanical or electrical stimulation was applied to the cornea, and extracellular single unit recordings were made from NTS neurons. Cornea nociceptor stimulation evoked bradycardia and an increase in the cycle length of the phrenic nerve discharge. Of 90 NTS neurons with ongoing activity, corneal stimulation excited 51 and depressed 39. There was a high degree of convergence to these NTS neurons from either baroreceptors or chemoreceptors. The excitatory synaptic response in 12 of 19 baroreceptive and 10 of 15 chemoreceptive neurons was attenuated significantly during concomitant electrical stimulation of the cornea. This inhibition was GABAA receptor mediated, being blocked by pressure ejection of bicuculline. Thus the NTS integrates information from corneal receptors, some of which converges onto neurons mediating reflexes from baroreceptors and chemoreceptors to inhibit these inputs.


Epilepsia ◽  
2002 ◽  
Vol 43 (9) ◽  
pp. 964-969 ◽  
Author(s):  
Victor M. Magdaleno-Madrigal ◽  
Alejandro Valdés-Cruz ◽  
David Martínez-Vargas ◽  
Adrián Martínez ◽  
Salvador Almazán ◽  
...  

2010 ◽  
Vol 104 (2) ◽  
pp. 726-741 ◽  
Author(s):  
Yi Kang ◽  
Robert F. Lundy

Previous studies have shown that corticofugal input to the first central synapse of the ascending gustatory system, the nucleus of the solitary tract (NST), can alter the way taste information is processed. Activity in other forebrain structures, such as the central nucleus of the amygdala (CeA), similarly influence activation of NST taste cells, although the effects of amygdalofugal input on neural coding of taste information is not well understood. The present study examined responses of 110 NST neurons to 15 taste stimuli before, during, and after electrical stimulation of the CeA in rats. The taste stimuli consisted of different concentrations of NaCl (0.03, 0.1, 0.3 M), sucrose (0.1, 0.3, 1.0 M), citric acid (0.005, 0.01 M), quinine HCl (0.003, 0.03 M), and 0.03 M MSG, 0.1 M KCl, as well as 0.1 M NaCl, 0.01 M citric acid, and 0.03 M MSG mixed with 10 μM amiloride. In 66% of NST cells sampled (73/110) response rates to the majority of effective taste stimuli were either inhibited or augmented. Nevertheless, the magnitude of effect across stimuli was often differential, which provides a neurophysiological mechanism to alter neural coding. Subsequent analysis of across-unit patterns showed that amygdalofugal input plays a role in shaping spatial patterns of activation and could potentially influence the perceptual similarity and/or discrimination of gustatory stimuli by altering this feature of neural coding.


1980 ◽  
Vol 59 (s6) ◽  
pp. 255s-257s ◽  
Author(s):  
Karen L. Barnes ◽  
C. M. Ferrario

1. The mechanism by which the area postrema augments central sympathetic drive during electrical stimulation is presently unknown. This pathway may involve either direct facilitation of brain-stem vasomotor neurons or inhibition of the sympatho-inhibitory baroreceptor relay in the nucleus tractus solitarii. 2. The present study employed selective lesions within the solitary tract nucleus to assess the participation of the primary baroreceptor relay in the pressor response during electrical stimulation of the area postrema. 3. The magnitude of the pressor response was unchanged after destruction of the solitary tract and lateral solitary nucleus which centrally interrupted the baroreceptor reflex. However, microknife cuts through the medial solitary nucleus, which spared the carotid sinus reflex, significantly reduced the magnitude of the area postrema pressor response. 4. Previous anatomical studies support these results and confirm that, although the area postrema pressor pathway traverses the most medial portion of the solitary complex, it does not produce augmented sympathetic outflow by inhibition of the primary baroreflex relay.


Sign in / Sign up

Export Citation Format

Share Document