Topography of the oculomotor area of the cerebellar vermis in macaques as determined by microstimulation

1987 ◽  
Vol 58 (2) ◽  
pp. 359-378 ◽  
Author(s):  
H. Noda ◽  
T. Fujikado

1. Oculomotor responses to microstimulation of the cerebellar vermis of macaque monkeys were investigated by using a magnetic search-coil method. 2. The oculomotor responses were conjugate eye movements with an ipsilateral horizontal component. Analyses of amplitude-velocity and amplitude-duration relationships revealed that the peak eye velocities and the durations of the responses were comparable to those of saccadic eye movements. 3. Systematic mapping with microstimulation disclosed that the region in the cerebellar vermis that yielded saccades with weak stimulus currents was confined to lobule VII in five monkeys but included a part of folium VIc in the other four monkeys. This region coincided with the distribution of the saccade-related neural activity observed in the present study and also corresponded to the vermal folia from which we recorded the burst mossy-fiber units and the oculomotor Purkinje cell activity. 4. The oculomotor vermis was defined as that region of the cerebellar vermis that met the following criteria: 1) saccades were evoked with low-intensity microstimulation (with currents less than 10 microA); 2) vigorous saccade-related neural activity was present; and 3) Purkinje cell discharges were modulated with eye movements. The oculomotor vermis was more circumscribed and located more posteriorly than the vermal cortex explored in previous microstimulation experiments on monkeys. 5. Microstimulation of the oculomotor vermis evoked more or less curved saccades in oblique directions. The horizontal and vertical components were not simultaneous in some saccades: the shorter component started later or ended earlier than the other component and their peak velocities were not always synchronous. 6. The amplitude of the saccade depended on stimulus parameters; microstimulation with 10-12 pulses within a period of approximately 20 ms (500-600 Hz) was shown to be optimal. When the pulses were applied to the white matter or to the granular layer, a stimulus current of 10 microA was sufficient to evoke saccades. When the molecular layer was stimulated, evoked saccades were smaller and frequently curved, and an increase in the stimulus current changed either the initial direction or the trajectory of the saccade. 7. When the stimulus current was carefully controlled and maintained near the threshold, the direction of the saccade evoked from the oculomotor vermis was topographically organized.(ABSTRACT TRUNCATED AT 400 WORDS)

2020 ◽  
Author(s):  
Skyler L. Jackman ◽  
Christopher H. Chen ◽  
Heather L. Offermann ◽  
Iain R. Drew ◽  
Bailey M. Harrison ◽  
...  

AbstractAlthough the cerebellum is traditionally associated with balance and motor function, it also plays wider roles in affective and cognitive behaviors. Evidence suggests that the cerebellar vermis may regulate aggressive behavior, though the cerebellar circuits and patterns of activity that influence aggression remain unclear. We used optogenetic methods to bidirectionally modulate the activity of spatially-delineated cerebellar Purkinje cells to evaluate the impact on aggression in mice. Increasing Purkinje cell activity in the vermis significantly reduced the frequency of attacks in a resident-intruder assay. Reduced aggression was not a consequence of impaired motor function, because optogenetic stimulation did not alter motor performance. In complementary experiments, optogenetic inhibition of Purkinje cells in the vermis increased the frequency of attacks. These results establish Purkinje cell activity in the cerebellar vermis regulates aggression, and further support the importance of the cerebellum in driving affective behaviors that could contribute to neurological disorders.


2000 ◽  
Vol 83 (4) ◽  
pp. 2374-2391 ◽  
Author(s):  
Alexandra Battaglia-Mayer ◽  
Stefano Ferraina ◽  
Takashi Mitsuda ◽  
Barbara Marconi ◽  
Aldo Genovesio ◽  
...  

Neural activity was recorded in the parietooccipital cortex while monkeys performed different tasks aimed at investigating visuomotor interactions of retinal, eye, and arm-related signals on neural activity. The tasks were arm reaching 1) to foveated targets; 2) to extrafoveal targets, with constant eye position; 3) within an instructed-delayed paradigm, under both light and darkness; 4) saccadic eye movements toward, and static eye holding on peripheral targets; and 5) visual fixation and stimulation. The activity of many cells was modulated during arm reaction (68%) and movement time (58%), and during static holding of the arm in space (64%), when eye position was kept constant. Eye position influenced the activity of many cells during hand reaction (45%) and movement time (51%) and holding of hand static position (69%). Many cells (56%) were also modulated during preparation for hand movement, in the delayed reach task. Modulation was present also in the dark in 59% of cells during this epoch, 51% during reaction and movement time, and 48% during eye/hand holding on the target. Cells (50%) displaying light-dark differences of activity were considered as related to the sight and monitoring of hand motion and/or position in the visual field. Saccadic eye movements modulated a smaller percentage (25%) of cells than eye position (68%). Visual receptive fields were mapped in 44% of the cells studied. They were generally large and extended to the periphery of the tested (30°) visual field. Sixty-six percent of cells were motion sensitive. Therefore the activity of many neurons in this area reflects the combined influence of visual, eye, and arm movement–related signals. For most neurons, the orientation of the preferred directions computed across different epochs and tasks, therefore expression of all different eye- and hand-related activity types, clustered within a limited sector of space, the field of global tuning. These spatial fields might be an ideal frame to combine eye and hand signals, thanks to the congruence of their tuning properties. The relationships between cell activity and oculomotor and visuomanual behavior were task dependent. During saccades, most cells were recruited when the eye moved to a spatial location that was also target for hand movement, whereas during hand movement most cells fired depending on whether or not the animal had prior knowledge about the location of the visual targets.


1996 ◽  
Vol 781 (1 Lipids and Sy) ◽  
pp. 314-321 ◽  
Author(s):  
KENJI KAWANO ◽  
MUNETAKA SHIDARA ◽  
AYA TAKEMURA ◽  
YUKA INOUE ◽  
HIROAKI GOMI ◽  
...  

2021 ◽  
Vol 15 ◽  
Author(s):  
Bing-Xue Li ◽  
Hua Jin ◽  
Guang-Jian Zhang ◽  
Li-Na Cui ◽  
Chun-Ping Chu ◽  
...  

Noradrenaline is an important neuromodulator in the cerebellum. We previously found that noradrenaline depressed cerebellar Purkinje cell activity and climbing fiber–Purkinje cell synaptic transmission in vivo in mice. In this study, we investigated the effect of noradrenaline on the facial stimulation-evoked cerebellar cortical mossy fiber–granule cell synaptic transmission in urethane-anesthetized mice. In the presence of a γ-aminobutyrateA (GABAA) receptor antagonist, air-puff stimulation of the ipsilateral whisker pad evoked mossy fiber–granule cell synaptic transmission in the cerebellar granular layer, which expressed stimulus onset response, N1 and stimulus offset response, N2. Cerebellar surface perfusion of 25 μM noradrenaline induced decreases in the amplitude and area under the curve of N1 and N2, accompanied by an increase in the N2/N1 ratio. In the presence of a GABAA receptor blocker, noradrenaline induced a concentration-dependent decrease in the amplitude of N1, with a half-maximal inhibitory concentration of 25.45 μM. The noradrenaline-induced depression of the facial stimulation-evoked mossy fiber–granule cell synaptic transmission was reversed by additional application of an alpha-adrenergic receptor antagonist or an alpha-2 adrenergic receptor antagonist, but not by a beta-adrenergic receptor antagonist or an alpha-1 adrenergic receptor antagonist. Moreover, application of an alpha-2 adrenergic receptor agonist, UK14304, significantly decreased the synaptic response and prevented the noradrenaline-induced depression. Our results indicate that noradrenaline depresses facial stimulation-evoked mossy fiber–granule cell synaptic transmission via the alpha-2 adrenergic receptor in vivo in mice, suggesting that noradrenaline regulates sensory information integration and synaptic transmission in the cerebellar cortical granular layer.


2021 ◽  
Author(s):  
Eric Avila ◽  
Nico A. Flierman ◽  
Peter J. Holland ◽  
Pieter R. Roelfsema ◽  
Maarten A. Frens ◽  
...  

AbstractConscious control of actions helps us to reach our goals by suppressing responses to distracting external stimuli. The cerebellum has been suggested to complement cerebral control of inhibition of targeted movements (conscious control), though by what means, remains unclear. By measuring Purkinje cell (PC) responses during antisaccades, we show that the cerebellum not only plays a role in the execution of eye movements, but also in during the volitional inhibition thereof. We found that simple spike (SS) modulation during instruction and execution of prosaccades and antisaccades was prominent in PCs of both medial and lateral cerebellum, showing distinct, time-ordered sequences, but each with different sensitivities for execution and trial-history. SS activity in both regions modulated bidirectionally, with both facilitation (increasing SS firing) and suppression (decreasing SS firing) PCs showing firing-rate changes associated with instruction and execution, respectively. These findings show that different cerebellar regions can contribute to behavioral control and inhibition, but with different propensities, enriching the cerebellar machinery in executive control.


Sign in / Sign up

Export Citation Format

Share Document