Insights into associative long-term potentiation from computational models of NMDA receptor-mediated calcium influx and intracellular calcium concentration changes

1990 ◽  
Vol 63 (5) ◽  
pp. 1148-1168 ◽  
Author(s):  
W. R. Holmes ◽  
W. B. Levy

1. Because induction of associative long-term potentiation (LTP) in the dentate gyrus is thought to depend on Ca2+ influx through channels controlled by N-methyl-D-aspartate (NMDA) receptors, quantitative modeling was performed of synaptically mediated Ca2+ influx as a function of synaptic coactivation. The goal was to determine whether Ca2+ influx through NMDA-receptor channels was, by itself, sufficient to explain associative LTP, including control experiments and the temporal requirements of LTP. 2. Ca2+ influx through NMDA-receptor channels was modeled at a synapse on a dendritic spine of a reconstructed hippocampal dentate granule cell when 1-115 synapses on spines at different dendritic locations were activated eight times at frequencies of 10-800 Hz. The resulting change in [Ca2+] in the spine head was estimated from the Ca2+ influx with the use of a model of a dendritic spine that included Ca2+ buffers, pumps, and diffusion. 3. To use a compelling model of synaptic activation, we developed quantitative descriptions of the NMDA and non-NMDA receptor-mediated conductances consistent with available experimental data. The experimental data reported for NMDA and non-NMDA receptor-channel properties and data from other non-LTP experiments that separated the NMDA and non-NMDA receptor-mediated components of synaptic events proved to be limiting for particular synaptic variables. Relative to the non-NMDA glutamate-type receptors, 1) the unbinding of transmitter from NMDA receptors had to be slow, 2) the transition from the bound NMDA receptor-transmitter complex to the open channel state had to be even slower, and 3) the average number of NMDA-receptor channels at a single activated synapse on a single spine head that were open and conducting at a given moment in time had to be very small (usually less than 1). 4. With the use of these quantitative synaptic conductance descriptions. Ca2+ influx through NMDA-receptor channels at a synapse was computed for a variety of conditions. For a constant number of pulses, Ca2+ influx was calculated as a function of input frequency and the number of coactivated synapses. When few synapses were coactivated, Ca2+ influx was small, even for high-frequency activation. However, with larger numbers of coactivated synapses, there was a steep increase in Ca2+ influx with increasing input frequency because of the voltage-dependent nature of the NMDA receptor-mediated conductance. Nevertheless, total Ca2+ influx was never increased more than fourfold by increasing input frequency or the number of coactivated synapses.(ABSTRACT TRUNCATED AT 400 WORDS)

2003 ◽  
Vol 358 (1432) ◽  
pp. 635-641 ◽  
Author(s):  
Graham L. Collingridge

The role of N -methyl-D-aspartate (NMDA) receptors in the induction of long-term potentiation (LTP) was established during the 1980s. In this article I present a personal reflection upon the role that my colleagues and I played in the discovery of the mechanism of induction of NMDA receptor-dependent LTP.


1998 ◽  
Vol 5 (4) ◽  
pp. 331-343
Author(s):  
Zhengping Jia ◽  
YouMing Lu ◽  
Jeff Henderson ◽  
Franco Taverna ◽  
Carmelo Romano ◽  
...  

The mechanisms underlying the differential expression of long-term potentiation (LTP) by AMPA and NMDA receptors, are unknown, but could involve G-protein-linked metabotropic glutamate receptors. To investigate this hypothesis we created mutant mice that expressed no metabotropic glutamate receptor 5 (mGluR5), but showed normal development. In an earlier study of these mice we analyzed field-excitatory postsynaptic potential (fEPSPs) in CA1 region of the hippocampus and found a small decrease; possibly arising from changes in the NMDAR-mediated component of synaptic transmission. In the present study we used whole-cell patch clamp recordings of evoked excitatory postsynaptic currents (EPSCs) in CA1 pyramidal neurons to identify the AMPAR- and NMDAR-mediated components of LTP. Recordings from control mice following tetanus, or agonist application (IS, 3R-1-amino-cyclopentane 1,3-dicarboxylic acid) (ACPD), revealed equal enhancement of the AMPA and NMDA receptor-mediated components. In contrast, CA1 neurons from mGluR5-deficient mice showed a complete loss of the NMDA-receptor-mediated component of LTP (LTPNMDA), but normal LTP of the AMPA-receptor-mediated component (LTPAMPA). This selective loss of LTPNMDA was seen in three different genotypic backgrounds and was apparent at all holding potentials (−70 mV to +20 mV). Furthermore, the LTPNMDA deficit in mGluR5 mutant mice could be rescued by stimulating protein kinase C (PKC) with 4β-phorbol-12,13-dibutyrate (PDBu). These results suggest that PKC may couple the postsynaptic mGluR5 to the NMDA-receptor potentiation during LTP, and that this signaling mechanism is distinct from LTPAMPA. Differential enhancement of AMPAR and NMDA receptors by mGluR5 also supports a postsynaptic locus for LTP.


PLoS ONE ◽  
2013 ◽  
Vol 8 (5) ◽  
pp. e63314 ◽  
Author(s):  
Zsuzsanna Szepesi ◽  
Monika Bijata ◽  
Blazej Ruszczycki ◽  
Leszek Kaczmarek ◽  
Jakub Wlodarczyk

1991 ◽  
Vol 65 (1) ◽  
pp. 20-32 ◽  
Author(s):  
Y. Komatsu ◽  
S. Nakajima ◽  
K. Toyama

1. Intracellular recording was made from layer II-III cells in slice preparations of kitten (30-40 days old) visual cortex. Low-frequency (0.1 Hz) stimulation of white matter (WM) usually evoked an excitatory postsynaptic potential (EPSP) followed by an inhibitory postsynaptic potential (IPSP). The postsynaptic potentials (PSPs) showed strong dependence on stimulus frequency. Early component of EPSP and IPSP evoked by weak stimulation both decreased monotonically at frequencies greater than 0.5-1 Hz. Strong stimulation similarly depressed the early EPSP at higher frequencies (greater than 2 Hz) and replaced the IPSP with a late EPSP, which had a maximum amplitude in the stimulus frequency range of 2-5 Hz. 2. Very weak WM stimulation sometimes evoked EPSPs in isolation from IPSPs. The falling phase of the EPSP revealed voltage dependence characteristic to the responses mediated by N-methyl-D-aspartate (NMDA) receptors and was depressed by application of an NMDA antagonist DL-2-amino-5-phosphonovalerate (APV), whereas the rising phase of the EPSP was insensitive to APV. 3. The early EPSPs followed by IPSPs were insensitive to APV but were replaced with a slow depolarizing potential by application of a non-NMDA antagonist 6,7-dinitro-quinoxaline-2,3-dione (DNQX), indicating that the early EPSP is mediated by non-NMDA receptors. The slow depolarization was mediated by NMDA receptors because it was depressed by membrane hyperpolarization or addition of APV. 4. The late EPSP evoked by higher-frequency stimulation was abolished by APV, indicating that it is mediated by NMDA receptors, which are located either on the recorded cell or on presynaptic cells to the recorded cells. 5. Long-term potentiation (LTP) of EPSPs was examined in cells perfused with solutions containing 1 microM bicuculline methiodide (BIM), a gamma-aminobutyric acid (GABA) antagonist. WM was stimulated at 2 Hz for 15 min as a conditioning stimulus to induce LTP, and the resultant changes were tested by low-frequency (0.1 Hz) stimulation of WM. 6. LTP of early EPSPs occurred in more than one-half of the cells (8/13) after strong conditioning stimulation. The rising slope of the EPSP was increased 1.6 times on average. 7. To test involvement of NMDA receptors in the induction of LTP in the early EPSP, the effect of conditioning stimulation was studied in a solution containing 100 microM APV, which was sufficient to block completely synaptic transmission mediated by NMDA receptors. LTP occurred in the same frequency and magnitude as in control solution.


2005 ◽  
Vol 565 (2) ◽  
pp. 579-591 ◽  
Author(s):  
Franco A. Taverna ◽  
John Georgiou ◽  
Robert J. McDonald ◽  
Nancy S. Hong ◽  
Alexander Kraev ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document