spine head
Recently Published Documents


TOTAL DOCUMENTS

38
(FIVE YEARS 10)

H-INDEX

15
(FIVE YEARS 2)

2022 ◽  
Author(s):  
Smita Yadav ◽  
Sujin Byeon ◽  
Bailey Werner ◽  
Reilly Falter ◽  
Kristian Davidsen ◽  
...  

Septins are a family of cytoskeletal proteins that regulate several important aspects of neuronal development. Septin 7 (Sept7) is enriched at the base of dendritic spines in excitatory neurons and mediates both spine formation and spine-synapse maturation. Phosphorylation at a conserved C-terminal tail residue of Sept7 mediates its translocation into the dendritic spine head to allow spine-synapse maturation. The mechanistic basis for postsynaptic stability and compartmentalization conferred by phosphorylated Sept7, however, is not known. We report herein the proteomic identification of Sept7 phosphorylation dependent neuronal interactors. Using Sept7 C-terminal phosphopeptide pulldown and biochemical assays, we show that the 14-3-3 family of proteins specifically interact with Sept7 when phosphorylated at the T426 residue. Biochemically, we validate the interaction between Sept7 and 14-3-3 isoform gamma, and show that 14-3-3 gamma is also enriched in mature dendritic spine head. Further, we demonstrate that interaction of phosphorylated Sept7 with 14-3-3 protects it from dephosphorylation, as expression of a 14-3-3 antagonist significantly decreases phosphorylated Sept7 in neurons. This study identifies 14-3-3 proteins as an important physiological regulator of Sept7 function in neuronal development.


2021 ◽  
Author(s):  
Sabrina Tazerart ◽  
Maxime G. Blanchard ◽  
Soledad Miranda-Rottmann ◽  
Diana E. Mitchell ◽  
Bruno Navea Pina ◽  
...  

AbstractDendritic spines are the main receptacles of excitatory information in the brain. Their particular morphology, with a small head connected to the dendrite by a slender neck, has inspired theoretical and experimental work to understand how these structural features affect the processing, storage and integration of synaptic inputs in pyramidal neurons (PNs).The activation of glutamate receptors in spines triggers a large voltage change as well as calcium signals at the spine head. Thus, voltage-gated and calcium-activated potassium channels located in the spine head likely play a key role in synaptic transmission. Here we study the presence and function of large conductance calcium-activated potassium (BK) channels in spines from layer 5 PNs. We find that BK channels are localized to dendrites and spines regardless of their size, but their activity can only be detected in spines with small head volumes (≤ 0.09 µm3), which reduces the amplitude of two-photon (2P) uncaging (u) excitatory postsynaptic potentials (EPSPs) recorded at the soma. In addition, we find that calcium signals in spines with small head volumes are significantly larger than those observed in spines with larger head volumes. In accordance with our experimental data, numerical simulations predict that synaptic inputs impinging onto spines with small head volumes generate voltage responses and calcium signals within the spine head itself that are significantly larger than those observed in spines with bigger head volumes, which are sufficient to activate spine BK channels. These results show that BK channels are selectively activated in small-headed spines, suggesting a new level of dendritic spine-mediated regulation of synaptic processing, integration, and plasticity in cortical PNs.


Author(s):  
Sehyoun Yoon ◽  
Nicolas H. Piguel ◽  
Natalia Khalatyan ◽  
Leonardo E. Dionisio ◽  
Jeffrey N. Savas ◽  
...  

AbstractHomer1 is a synaptic scaffold protein that regulates glutamatergic synapses and spine morphogenesis. HOMER1 knockout (KO) mice show behavioral abnormalities related to psychiatric disorders, and HOMER1 has been associated with psychiatric disorders such as addiction, autism disorder (ASD), schizophrenia (SZ), and depression. However, the mechanisms by which it promotes spine stability and its global function in maintaining the synaptic proteome has not yet been fully investigated. Here, we used computational approaches to identify global functions for proteins containing the Homer1-interacting PPXXF motif within the postsynaptic compartment. Ankyrin-G was one of the most topologically important nodes in the postsynaptic peripheral membrane subnetwork, and we show that one of the PPXXF motifs, present in the postsynaptically-enriched 190 kDa isoform of ankyrin-G (ankyrin-G 190), is recognized by the EVH1 domain of Homer1. We use proximity ligation combined with super-resolution microscopy to map the interaction of ankyrin-G and Homer1 to distinct nanodomains within the spine head and correlate them with spine head size. This interaction motif is critical for ankyrin-G 190’s ability to increase spine head size, and for the maintenance of a stable ankyrin-G pool in spines. Intriguingly, lack of Homer1 significantly upregulated the abundance of ankyrin-G, but downregulated Shank3 in cortical crude plasma membrane fractions. In addition, proteomic analysis of the cortex in HOMER1 KO and wild-type (WT) mice revealed a global reshaping of the postsynaptic proteome, surprisingly characterized by extensive upregulation of synaptic proteins. Taken together, we show that Homer1 and its protein interaction motif have broad global functions within synaptic protein-protein interaction networks. Enrichment of disease risk factors within these networks has important implications for neurodevelopmental disorders including bipolar disorder, ASD, and SZ.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Hiromi Tamada ◽  
Jerome Blanc ◽  
Natalya Korogod ◽  
Carl CH Petersen ◽  
Graham W Knott

Previously, we showed that cryo fixation of adult mouse brain tissue gave a truer representation of brain ultrastructure in comparison with a standard chemical fixation method (Korogod et al., 2015). Extracellular space matched physiological measurements, there were larger numbers of docked vesicles and less glial coverage of synapses and blood capillaries. Here, using the same preservation approaches, we compared the morphology of dendritic spines. We show that the length of the spine and the volume of its head is unchanged; however, the spine neck width is thinner by more than 30% after cryo fixation. In addition, the weak correlation between spine neck width and head volume seen after chemical fixation was not present in cryo-fixed spines. Our data suggest that spine neck geometry is independent of the spine head volume, with cryo fixation showing enhanced spine head compartmentalization and a higher predicted electrical resistance between spine head and parent dendrite.


2020 ◽  
Author(s):  
Waja Wegner ◽  
Heinz Steffens ◽  
Carola Gregor ◽  
Fred Wolf ◽  
Katrin I. Willig

AbstractSynaptic plasticity underlies long-lasting structural and functional changes to brain circuitry and its experience-dependent remodeling can be fundamentally enhanced by environmental enrichment. It is unknown, however, whether and how environmental enrichment alters the morphology and dynamics of individual synapses. Here, we present a virtually crosstalk free, two-color in vivo STED microscope to simultaneously superresolve the dynamics of the postsynaptic density protein PSD95 and spine geometry. With environmental enrichment, the size distribution of PSD95 and spine head sizes were narrower than in controls, indicating that synaptic strength is set more precisely with environmental enrichment. Spine head geometry and PSD95 assemblies were highly dynamic exhibiting multiplicative size changes. With environmental enrichment, the topography of PSD95 nanoorganization was more dynamic and the magnitude of reorganization increased systematically with time. Thus, two-color in vivo time-lapse imaging of synaptic nanoorganization uncovers a unique synaptic nanodynamics associated with the enhanced learning capabilities under environmental enrichment.


2020 ◽  
Author(s):  
BM Siemsen ◽  
KN Hooker ◽  
EA Carpenter ◽  
ME Prescott ◽  
AG Brock ◽  
...  

AbstractClinical and preclinical studies indicate that adaptations in corticostriatal neurotransmission significantly contribute to heroin relapse vulnerability. In animal models, heroin self-administration and extinction produce cellular adaptations in both neurons and astrocytes within the nucleus accumbens (NA) core that are required for cue-induced heroin seeking. Specifically, decreased glutamate clearance and reduced association of perisynaptic astrocytic processes with NAcore synapses allow glutamate release from prelimbic (PrL) cortical terminals to engage synaptic and structural plasticity in NAcore medium spiny neurons. Normalizing astroglial glutamate homeostasis with drugs like the antioxidant N-acetylcysteine (NAC) prevents cue-induced heroin seeking. Surprisingly, little is known about heroin-induced alterations in astrocytes or pyramidal neurons projecting to the NAcore in the PrL cortex (PrL-NAcore). Here, we observed increased complexity of the glial fibrillary acidic protein (GFAP) cytoskeletal arbor and increased association of the astroglial plasma membrane with synaptic markers following heroin SA and extinction training in the PrL cortex. Repeated treatment with NAC during extinction reversed both the enhanced astroglial complexity and synaptic association. In PrL-NAcore neurons, heroin SA and extinction decreased apical tuft dendritic spine density and enlarged dendritic spine head diameter in male Sprague-Dawley rats. Repeated NAC treatment during extinction prevented decreases in spine density but not dendritic spine head expansion. Moreover, heroin SA and extinction increased co-registry of the GluA1 subunit of AMPA receptors in both the dendrite shaft and spine heads of PrL-NAcore neurons. Interestingly, accumulation of GluA1 immunoreactivity in spine heads was further potentiated by NAC treatment during extinction. Taken together, our data reveal circuit-level adaptations in cortical dendritic spine morphology potentially linked to heroin-induced alterations in astrocyte complexity and association at synapses. Additionally, these data demonstrate, for the first time, that NAC reverses PrL cortical heroin SA and extinction-induced adaptations in both astrocytes and corticostriatal neurons.


2020 ◽  
Author(s):  
Hiromi Tamada ◽  
Jerome Blanc ◽  
Natalya Korogod ◽  
Carl CH Petersen ◽  
Graham W Knott

ABSTRACTPreviously we showed that cryo fixation of brain tissue gave a truer representation of brain ultrastructure in comparison with a standard chemical fixation method (Korogod et al 2005). Extracellular space matched physiological measurements, there were larger numbers of docked vesicles and less glial coverage of synapses and blood capillaries. Here, using the same preservation approaches we compared the morphology of dendritic spines. We show that the length of the spine and the volume of its head is unchanged, however, the spine neck width is thinner by more than 30 % after cryo fixation. In addition, the weak correlation between spine neck width and head volume seen after chemical fixation was not present in cryo-fixed spines. Our data suggest that spine neck geometry is independent of the spine head volume, with cryo fixation showing enhanced spine head compartmentalization and a higher predicted electrical resistance between spine head and parent dendrite.


eNeuro ◽  
2020 ◽  
Vol 7 (1) ◽  
pp. ENEURO.0303-19.2019 ◽  
Author(s):  
Patrik Hollos ◽  
Jismi M. John ◽  
Jukka V. Lehtonen ◽  
Eleanor T. Coffey

2019 ◽  
Vol 151 (8) ◽  
pp. 1017-1034 ◽  
Author(s):  
Miriam Bell ◽  
Tom Bartol ◽  
Terrence Sejnowski ◽  
Padmini Rangamani

Dendritic spines are small subcompartments that protrude from the dendrites of neurons and are important for signaling activity and synaptic communication. These subcompartments have been characterized to have different shapes. While it is known that these shapes are associated with spine function, the specific nature of these shape–function relationships is not well understood. In this work, we systematically investigated the relationship between the shape and size of both the spine head and spine apparatus, a specialized endoplasmic reticulum compartment within the spine head, in modulating rapid calcium dynamics using mathematical modeling. We developed a spatial multicompartment reaction–diffusion model of calcium dynamics in three dimensions with various flux sources, including N-methyl-D-aspartate receptors (NMDARs), voltage-sensitive calcium channels (VSCCs), and different ion pumps on the plasma membrane. Using this model, we make several important predictions. First, the volume to surface area ratio of the spine regulates calcium dynamics. Second, membrane fluxes impact calcium dynamics temporally and spatially in a nonlinear fashion. Finally, the spine apparatus can act as a physical buffer for calcium by acting as a sink and rescaling the calcium concentration. These predictions set the stage for future experimental investigations of calcium dynamics in dendritic spines.


Sign in / Sign up

Export Citation Format

Share Document