Monosynaptic EPSPs in primate lumbar motoneurons

1993 ◽  
Vol 70 (4) ◽  
pp. 1585-1592 ◽  
Author(s):  
J. S. Carp

1. Homonymous and heteronymous monosynaptic composite excitatory postsynaptic potentials (EPSPs) were evaluated by intracellular recordings from 89 motoneurons innervating triceps surae (n = 59) and more distal (n = 30) muscles in 14 pentobarbital-anesthetized monkeys (Macaca nemestrina). 2. Homonymous EPSPs were found in all motoneurons tested. The mean values +/- SD for maximum EPSP amplitude of triceps surae motoneurons were 2.5 +/- 1.3, 1.8 +/- 1.3 and 4.5 +/- 2.0 mV for medial gastrocnemius, lateral gastrocnemius, and soleus motoneurons, respectively. Heteronymous EPSPs were almost always smaller than their corresponding homonymous EPSPs. 3. Triceps surae EPSP amplitude was larger in motoneurons with higher input resistance. However, this relationship was weak, suggesting that factors related to input resistance play a limited role in determining the magnitude of the EPSP. 4. The mean ratio +/- SD of the amplitude of the EPSP elicited by combined stimulation of all triceps surae nerves to the amplitude of the algebraic sum of the three individual EPSPs was 0.95 +/- 0.05. This ratio was greater in motoneurons with lower rheobase. 5. Some patterns of synaptic connectivity in the macaque are consistent with previously reported differences between primates and cat (e.g., heteronymous EPSPs elicited by medial gastrocnemius nerve stimulation in soleus motoneurons are small in macaque and other primates but large in cat). However, no overall pattern emerges from a comparison of the similarities and differences in EPSPs among species in which they have been studied (i.e., macaque, baboon, and cat). That is, there are no two species in which EPSP properties are consistently similar to each other, but different from those of the third species.(ABSTRACT TRUNCATED AT 250 WORDS)

1987 ◽  
Vol 57 (4) ◽  
pp. 1227-1245 ◽  
Author(s):  
R. C. Foehring ◽  
G. W. Sypert ◽  
J. B. Munson

We tested whether the muscle innervated may influence the expression of motoneuron electrical properties. Properties of individual motor units were examined following cross-reinnervation (X-reinnervation) of cat lateral gastrocnemius (LG) and soleus muscles by the medial gastrocnemius (MG) nerve. We examined animals at two postoperative times: 9-10 wk (medX) and 9-11 mo (longX). For comparison, normal LG and soleus motoneuron properties were also studied. Motor units were classified on the basis of their contractile responses as fast contracting fatigable, fast intermediate fast contracting fatigue resistant, and slow types FF, FI, FR, or S, respectively) (9, 21). Motoneuron electrical properties (rheobase, input resistance, axonal conduction velocity, afterhyperpolarization) were measured. After 9-11 mo, MG motoneurons that innervated LG muscle showed recovery of electrical properties similar to self-regenerated MG motoneurons. The relationships between motoneuron electrical properties were largely similar to self-regenerated MG. For MG motoneurons that innervated LG, motoneuron type (65) predicted motor-unit type in 74% of cases. LongX-soleus motoneurons differed from longX-LG motoneurons or self-regenerated MG motoneurons in mean values for motoneuron electrical properties. The differences in overall means reflected the predominance of type S motor units. The relationships between motoneuron electrical properties were also different than in self-regenerated MG motoneurons. In all cases, the alterations were in the direction of properties of type S units, and the relationship between normal soleus motoneurons and their muscle units. Within motor-unit types, the mean values were typical for that type in self-regenerated MG. Motoneuron type (65) was a fairly strong predictor of motor-unit type in longX soleus. MG motoneurons that innervated soleus displayed altered values for axonal conduction velocity, rheobase, and input resistance, which could indicate incomplete recovery from the axotomized state. However, although mean afterhyperpolarization (AHP) half-decay time was unaltered by axotomy (25), this parameter was significantly lengthened in MG motoneurons that innervated soleus muscle. There were, however, individual motoneuron-muscle-unit mismatches, which suggested that longer mean AHP half-decay time may also be due to incomplete recovery of a subpopulation of motoneurons. Those MG motoneurons able to specify soleus muscle-fiber type exhibited motoneuron electrical properties typical of that same motoneuron type in self-regenerated MG.(ABSTRACT TRUNCATED AT 400 WORDS)


1983 ◽  
Vol 49 (4) ◽  
pp. 922-931 ◽  
Author(s):  
J. E. Zengel ◽  
S. A. Reid ◽  
G. W. Sypert ◽  
J. B. Munson

1. Composite group Ia excitatory postsynaptic potentials (EPSPs) produced by heteronymous nerve stimulation were recorded from triceps surae motoneurons of barbiturate-anesthetized cats. Motoneuron rheobase, input resistance, and axonal conduction velocity were measured, and motor units were classified on the basis of the mechanical responses of their muscle units. 2. The amplitude of EPSPs recorded from 33 medial gastrocnemius (MG) motoneurons ranged from 0.6 to 4.3 mV. The mean EPSP amplitude differed among the major MG motor-unit types, increasing in the order fast twitch, fast fatiguing (FF); fast twitch, fatigue resistant (FR); slow twitch, fatigue resistant (S) (FF less than FR less than S). The amplitude of EPSPs recorded from 15 soleus motoneurons ranged from 0.3 to 3.4 mV, with a mean of 1.4 mV. 3. Presynaptic inhibition of EPSPs was produced by trains of conditioning volleys in the posterior biceps-semitendinosus (PBST) nerve. In 33 MG cells PBST conditioning stimulation reduced the amplitude of EPSPs by 11-50%, with a mean inhibition of 27%. The amplitude of EPSPs in 15 soleus motoneurons was decreased by 5-84%, with a mean inhibition of 37%. 4. When the magnitude of presynaptic inhibition was expressed as percent inhibition, there was no relation between presynaptic inhibition and either motor-unit type or the amplitude of the EPSP. However, when presynaptic inhibition was expressed as the absolute amount of inhibition in millivolts, the magnitude of inhibition was highly correlated with EPSP amplitude both across the entire triceps surae population (MG, lateral gastrocnemius, soleus) as well as within each muscle population. This correlation was also significant within the MG FF and FR motor-unit populations. 5. We conclude that EPSP amplitude and not motor-unit type is the major determinant of the magnitude of presynaptic inhibition. However, because of the effect of motor-unit type on EPSP amplitude, the net effect is that presynaptic inhibition increases in the order FF less than FR less than S.


1994 ◽  
Vol 71 (4) ◽  
pp. 1480-1490 ◽  
Author(s):  
S. Hochman ◽  
D. A. McCrea

1. In this paper we continue an examination of changes in composite Ia excitatory postsynaptic potentials (EPSPs) in ankle extensor motoneurons after 6-wk (L1-L2) spinal cordotomy. The ratio of rheobase to input resistance was used to divide motoneurons into three groups approximating fast-fatigable (FF), fast fatigue-resistant (FR), and slow (S) motor units in barbiturate-anesthetized cats. Homonymous monosynaptic Ia EPSPs evoked by low-strength [1.2 times threshold (T)] electrical stimulation and heteronymous EPSPs evoked by 2T stimulation were compared between groups of motoneurons in unlesioned and chronic spinal preparations. 2. The distribution of motor unit types of triceps surae and plantaris (PL) motoneurons according to the present classification scheme agrees well with that obtained elsewhere using mechanical typing. Chronic spinalization resulted in an increased proportion of type FF motoneurons in PL and type FR motoneurons in lateral gastrocnemius (LG) motoneurons. There was a numeric but insignificant increase in the proportion of fast medial gastrocnemius motor units. 3. Membrane time constant (tau m) and estimated total cell capacitance were significantly reduced in FF and S motoneurons in chronic spinal preparations. FF motoneurons from chronic spinal animals also had a reduced afterhyperpolarization duration. Mean values of membrane electrical properties in FR motoneurons were unaltered after spinalization. 4. Homonymous Ia EPSP changes after chronic spinalization occurred preferentially in type FR and S motor units. Amplitudes increased 69% in type FR and 38% type S motor units but were unchanged in type FF units. Furthermore, the amplitudes of heteronymous Ia EPSPs in type FF and S units in the chronic spinal preparation were almost double those in unlesioned preparations. 5. Homonymous EPSP 10-90% rise times decreased 25% in type FR motor units and 15% in type S motor units and were unchanged in type FF motor units. Homonymous EPSP half-width decreased in all three motoneuron groups. Normalization of EPSP rise time and half-width to tau m reduced the difference between EPSP shape indexes in unlesioned and chronic spinal preparations in type FF and S motoneurons but less so in type FR motoneurons. Normalized EPSP shape indexes in some type FR units were shorter after chronic spinalization than any in unlesioned preparations. 6. The increased amplitude and decreased rise time of Ia EPSPs in type FR motoneurons after spinalization occurred without changes in the electrical properties of type FR motor units.(ABSTRACT TRUNCATED AT 400 WORDS)


1989 ◽  
Vol 61 (2) ◽  
pp. 291-301 ◽  
Author(s):  
L. A. LaBella ◽  
J. P. Kehler ◽  
D. A. McCrea

1. Postsynaptic potentials (PSPs) were recorded in 115 triceps surae motoneurons of 10 chloralose-anesthetized adult cats (spinal cord intact), upon electrical stimulation of the caudal and lateral cutaneous sural nerve branches (CCS and LCS, respectively). 2. With twice threshold (2T) stimulation of CCS, excitatory PSPs (EPSPs) were the predominant effect in 95% of all medial gastrocnemius (MG) motoneurons tested (min. central latency 1.5 ms; mean 2.4 ms). In only a few MG cells was the EPSP followed by an inhibitory postsynaptic potential (IPSP) and in only one cell was an IPSP the sole effect. Increasing the stimulus intensity to 5T tended to enhance both the later EPSP and IPSP components, with less change in the amplitude or latency of the earliest EPSPs. 3. In lateral gastrocnemius (LG) and soleus (SOL) motoneurons, 2T CCS stimulation led to either inhibition or no potential change in the majority of cells tested: EPSPs were the predominant effect in only 15 and 30% of LG and SOL cells, respectively (min. central latency 2.5 ms; mean 3.0 ms) and rarely occurred without subsequent inhibition. Again, increasing the stimulus intensity to 5T had more of an effect on later rather than earlier PSP components. 4. A predominance of depolarization in MG motoneurons but not in SOL motoneurons is in agreement with previous findings that CCS excitation is more powerful in "fast type" triceps surae motoneurons. However, the strong predominance of hyperpolarizing effects of CCS stimulation in the present LG population is evidence that such an organization does not transcend triceps surae motor nuclei as a whole. 5. Postsynaptic effects of LCS stimulation at 2T were frequently weak or absent but increasing the stimulus intensity to 5T produced predominant inhibition in 71% of all triceps surae motoneurons studied (n = 107). Of the few cells which did receive excitation from this nerve, most were MG, a few were SOL, and none were LG. These EPSPs occurred more frequently at 5T than at lower stimulation strengths. 6. The results indicate that excitation produced by electrical stimulation of the ipsilateral CCS nerve occurs preferentially in the MG portion of triceps surae and with the shortest central latencies. Effects of LCS stimulation are largely inhibitory throughout the motor nuclei comprising triceps surae but even here, the presence of excitation occurs more frequently in MG. A comparison of these results with those in other reports is discussed.


1994 ◽  
Vol 71 (6) ◽  
pp. 2281-2293 ◽  
Author(s):  
C. J. Heckman ◽  
J. F. Miller ◽  
M. Munson ◽  
K. D. Paul ◽  
W. Z. Rymer

1. Steady-state postsynaptic potentials (PSPs) were generated by prolonged (approximately 1 s) high-frequency (100-200 Hz) electrical stimulation of nerves in the cat hindlimb. The characteristics of these steady-state PSPs were compared for two polysynaptic afferent pathways (ipsilateral cutaneous sural vs. contralateral peroneal nerves), two animal preparations (decerebrate vs. chloralose), and two motoneuron pools (medial gastrocnemius vs. lateral gastrocnemius-soleus). 2. PSPs from both nerves usually (36 of 51 cases) contained a mixture of depolarizing and hyperpolarizing components. In all 36 cases where the PSP contained a hyperpolarizing component, a consistent qualitative pattern emerged during prolonged stimulation: the hyperpolarization reached a peak approximately 20 ms after stimulation onset and then decayed with a biphasic time course that consisted of an initial rapid phase (20–40 ms) and a later slower phase (200–400 ms) before the steady-state value was reached. This pattern occurred regardless of the differences in polysynaptic afferent pathways, animal preparations, and motoneuron pools. 3. The consistency of this overall pattern was remarkable, given the existence of several quantitative differences among the PSPs. These differences include the following: hyperpolarizing components were least common in the sural and peroneal PSPs in the decerebrate preparation. And only these sural and peroneal PSPs tended to have prolonged afterpotentials after stimulus cessation. The steady-state sural PSPs in the decerebrate preparation tended to generate the largest PSPs and, moreover, these PSPs did not follow the overall trend of having a statistically significant relation between the amplitude of the initial hyperpolarization and the amount of its decay. Finally, transient sural PSPs in lateral gastrocnemius-soleus motoneurons in the decerebrate preparation tended to have the largest hyperpolarizations. 4. To determine whether the decay of the hyperpolarization and the subsequent dominance of depolarization was due to a decreased inhibition or an increased excitation, injected current pulses were utilized to measure the changes in the cell's input resistance during the course of the synaptic input. A strong decrease in input resistance accompanied the initial period of maximal hyperpolarization (50% with respect to the resting input resistance). Input resistance then returned toward resting values as hyperpolarization faded and depolarization became dominant. However, there remained a persistent decrease in input resistance during the final phase of the PSP that amounted to < 10% of the initial decrease. These findings indicated that much of the reduction in hyperpolarization reflected a progressive decrease in synaptic efficacy for the inhibition.(ABSTRACT TRUNCATED AT 400 WORDS)


1989 ◽  
Vol 62 (2) ◽  
pp. 325-333 ◽  
Author(s):  
S. Vanden Noven ◽  
M. J. Pinter

1. Composite excitatory postsynaptic potentials (EPSPs) evoked by electrical stimulation of heteronymous group Ia afferents have been studied at various postoperative times in axotomized motoneurons that were denied the opportunity to reinnervate muscle. 2. The medial gastrocnemius (MG) nerve was transected and sutured onto the surface of the normally innervated lateral gastrocnemius (LG) muscle. The denervated MG muscle was excised thereby eliminating access of regenerating MG motor axons to vacant end-plates. 3. The mean amplitude of monosynaptic Ia EPSPs evoked by electrical stimulation of the LG-soleus (LGS) nerve and recorded in axotomized MG motoneurons showed an initial decline at 20 days postoperative (DPO) that was not significant. At 44 DPO, mean amplitude had declined significantly to 43% of the control mean amplitude. At 90 DPO, mean EPSP amplitude was not significantly different from control. At the latest postoperative time (150-180 DPO), mean amplitude was significantly less than the control amplitude. 4. Mean EPSP rise time (time-to-peak) was significantly increased (27%) at the earliest postoperative times (20-44 DPO). At later postoperative times (90-180), mean EPSP rise time was not significantly different from mean control rise time. 5. "Partial responses" superimposed on EPSPs were not observed at any postoperative time. 6. Mean posttetanic potentiation (PTP) of the LGS EPSP was significantly depressed at 20 DPO. At later postoperative times, PTP did not differ significantly from mean control PTP. 7. The possibility is considered that postaxotomy alterations in the electrical properties of motoneurons may explain these complex variations of mean EPSP amplitude and rise time.


1989 ◽  
Vol 62 (2) ◽  
pp. 311-324 ◽  
Author(s):  
M. J. Pinter ◽  
S. Vanden Noven

1. The intent of this study was to determine the effect on the electrical properties of axotomized spinal motoneurons when motor axons are allowed to regenerate but are denied the opportunity to reinnervate muscle. 2. The nerve supplying the medial gastrocnemius (MG) muscle in cats was served close to its entry into the muscle and sutured onto the surface of the lateral gastrocnemius (LG) muscle. The MG muscle was excised to prevent availability of vacant end-plates to the regenerating MG axons. The electrical properties of antidromically identified MG motoneurons were studied using intracellular recording at various postoperative intervals. 3. In 9 of 12 experimental animals, no sign of functional innervation by MG axons of the LG muscle could be detected. In three experimental animals, electrical and contraction activity in the LG muscle was observed following electrical stimulation of the transplanted MG nerve. The observed electrical and contraction activity was, however, negligible compared to the effects of electrical stimulation of the intact LG-soleus nerve. 4. At the earliest postoperative interval studied (20 days), MG motoneuron electrical properties [input resistance, afterhyperpolarization (AHP) duration, conduction velocity, time constant, rheobase current, and sag] exhibited significant changes that were nearly identical to those described for spinal motoneurons following section of ventral roots or motor nerves or in the earliest stages of reinnervation. 5. At the 44-60 day postoperative (DPO) intervals, several motoneuron electrical properties showed signs of recovery to control levels. At 44 DPO, average values of input resistance, time constant, and AHP duration declined from the significant increases observed at 20 DPO and could not be distinguished statistically from control mean values. 6. These indications of an early recovery of normal electrical properties were not sustained. At subsequent postoperative intervals (90, 120, and 150-180 DPO), average values of motoneuron electrical properties tended to be similar to those observed at 20 DPO. 7. Correlations observed among control motoneuron electrical properties were weakened and the pattern of correlation was disrupted at all postoperative intervals. 8. In conjunction with previous results demonstrating recovery of normal electrical properties following reinnervation (Foehring et al. 1986b), our findings suggest that functional contact with muscle is required for the full expression of the normal range of motoneuron electrical properties.(ABSTRACT TRUNCATED AT 400 WORDS)


1981 ◽  
Vol 90 (1) ◽  
pp. 85-100
Author(s):  
CHARLES H. PAGE

Postural extensions of the abdomen of the crayfish, Procambarus clarkii, could be evoked by mechanical stimulation of a single thoracic leg. Movement of a single leg joint was sufficient to initiate an extension response. Vigorous abdominal extensions were initiated either by depression of the whole leg (WLD) or by flexion of the mero-carpal joint (MCF). Weaker extension responses were obtained by depression of the thoracic-coxal and coxo-basal joints. Similar stimulation of the chelipeds did not elicit an abdominal extension response. Single-frame analysis of motion pictures of crayfish responding to WLD or MCF stimulation of a 2nd thoracic leg showed that the responses evoked by the two different stimulus situations were nearly identical. They differed principally in the responses of the leg located contralateral to the stimulated leg. Movements of most of the cephalic, thoracic and abdominal appendages accompanied the abdominal extension response. Only the eyes remained stationary throughout the response. The mean values of the latencies for the initiation of appendage movement ranged from 125 to 204 ma; abdominal movement had a mean latency of about 220 ms. The abdominal extension reflex resulted from the activity of the tonic superficial extensor muscles. The deep phasic extensor muscles were silent during the response. The mean latencies for the initiation of superficial extensor muscle activity by WLD and MCF stimulation were 53·7 and 50·0 ms respectively.


1977 ◽  
Vol 40 (1) ◽  
pp. 95-105 ◽  
Author(s):  
R. Capek ◽  
B. Esplin

1. The transmission in the spinal monosynaptic pathway was studied during repetitive stimulation of a motor nerve by 10 stimuli at 2, 5, or 10 Hz in spinal cats. Initially, the amplitudes of the monosynaptic responses rapidly declined, reaching a plateau after a few stimuli. The level of the plateau was inversely related to the frequency of stimulation. 2. This depression of monosynaptic response was seen only when the same pathway was stimulated; the response elicited from the lateral gastrocnemius was not depressed when preceded by stimulation of the medial gastrocnemius nerve and vice versa. Pretreatment with semicarbazide left the homosynaptic depression unchanged while suppressing the dorsal root reflex. The participation of a depolarization of primary afferents in the described depression is, therefore, unlikely. 3. The decrease of transmitter release by successive volleys, which is the cause of the observed depression, could conceivably be related to the depletion of transmitter stores. 4. A procedure is described, based on this assumption, which allows the calculation of transmitter turnover. The input-output relation in the spinal monosynaptic pathway is used to convert the amplitudes of monosynaptic responses to the amounts of transmitter, both relative to the maximum response. The changes of transmitter release are analyzed under the assumption that each volley releases instantaneously a constant fraction of the transmitter store available for release and that this store is replenished at a constant fraction of the depleted part per second. 5. The values of fractional release per volley were about 0.4, irrespective of frequency of stimulation. 6. The values of fractional replenishment per second ranged from about 1 to 5 on the average, depending directly on the frequency of stimulation. 7. It is suggested that the described procedure might be useful in analyzing drug effects on synaptic transmission.


1990 ◽  
Vol 63 (3) ◽  
pp. 395-403 ◽  
Author(s):  
T. M. Hamm

1. Recurrent inhibitory postsynaptic potentials (IPSPs) to and from motoneurons innervating the flexor digitorum longus (FDL) and flexor hallucis longus (FHL) muscles of the cat were investigated to determine whether recurrent inhibitory projections involving these motoneurons are similar--as would be consistent with the Ia and anatomic synergism of FDL and FHL--or are dissimilar, as are the activities of these muscles during locomotion (O'Donovan et al. 1982). 2. Composite recurrent IPSPs were recorded in several species of motoneurons innervating hindlimb muscles in response to stimulation of a number of muscle nerves in cats allowed to become unanesthetized after ischemic decapitation. 3. No recurrent IPSPs from stimulation of the FDL nerve were observed in motoneurons innervating FDL, FHL, lateral gastrocnemius-soleus (LG-S), medial gastrocnemius (MG), plantaris (Pl), tibialis anterior (TA), or extensor digitorum longus (EDL). 4. The recurrent IPSPs produced by stimulation of FHL were larger and found more frequently in LG-S than in FDL motoneurons. Recurrent inhibition from FHL was also greater in Pl than in FDL motoneurons. 5. The recurrent IPSPs produced by stimulation of LG-S, PL, and MG were larger in FHL than in FDL motoneurons, and those from LG-S and MG were found more frequently in FHL than in FDL motoneurons. 6. Stimulation of the TA nerve produces recurrent IPSPs in FDL but not in FHL motoneurons. A few FDL and FHL cells (6 of 23 and 9 of 34, respectively) received small (less than 0.5 mV) recurrent IPSPs from stimulation of the EDL nerve.(ABSTRACT TRUNCATED AT 250 WORDS)


Sign in / Sign up

Export Citation Format

Share Document