Powder diffraction analysis of substituted sulfonylurea

2002 ◽  
Vol 17 (1) ◽  
pp. 48-51 ◽  
Author(s):  
Yu PuLan ◽  
Ding Shuang ◽  
Qiao YuanYuan ◽  
Yao XinKan ◽  
Zhang HaiYue ◽  
...  

The crystal structure of a series of substituted sulfonylureas were studied in this paper by means of powder diffraction, and the cell dimensions of each compound were refined by a least squares analysis. The cell parameters were in good agreement with those obtained from single crystal data. © 2002 International Centre for Diffraction Data.

1995 ◽  
Vol 10 (3) ◽  
pp. 178-179 ◽  
Author(s):  
Gerzon Delgado ◽  
A. Valentina Rivera ◽  
Trino Suárez ◽  
Bernardo Fontal

X-ray powder diffraction data for Dichloro [bis(2-diphenylphosphinoethyl) phenylphosphine] [dimethylsulfoxide] Ruthenium (II) is reported. The powder pattern was obtained using CuKα radiation. The lattice parameters determinated by least-squares refinement for the monoclinic space group P21/c are: a = 21.073(3) Å, b = 11.970(2) Å, c = 16.889(3) Å, and β = 107.72(1)°, with M20 = 10.67 and F30 = 15.4 (0.0145, 134), and are in good agreement with those obtained from the single crystal structure determination. Observed and calculated X-ray powder diffraction data are given for the titled compound.


1991 ◽  
Vol 6 (1) ◽  
pp. 10-15 ◽  
Author(s):  
Patricia Bénard ◽  
Michèle Louër ◽  
Daniel Louër

AbstractA comparison between the results of ab initio structure determination from X-ray powder diffraction data of a new cadmium hydroxide nitrate, Cd5(OH)8 (NO3)2·2H2O (SG C2/m), and those obtained from single crystal data is presented. The powder diffraction pattern has been analysed by an indexing method and fitting techniques. A total of 119 unambiguously indexed reflections has been extracted and used in subsequent treatment. The power of powder techniques to index the pattern and to find the structure model by normal Patterson and Fourier methods is clearly shown. The refinement of approximate coordinates has been carried out by the Rietveld method (444 reflections). The comparison of results with those obtained from single crystal data (2218 reflections) shows that the precision of positional parameter values is lower by a factor of 10, on average, in the powder study. These results are discussed in terms of crystallographic parameters (number of reflections used, number of parameters to refine, contrast between atoms) and, also, in terms of sample dependent properties (preferred orientation effect, impurity). Finally, the crystal structure has been derived from powder data with a precision probably sufficient for most purposes.


2002 ◽  
Vol 17 (1) ◽  
pp. 44-47
Author(s):  
Yu PuLan ◽  
Ding Shuang ◽  
Qiao YuanYuan ◽  
Yao XinKan ◽  
Liu Chong ◽  
...  

Two compounds have been studied by means of powder diffraction and their unit cell parameters are reported. The monoclinic cell parameters for dimethylgermanyl-bridged bis cyclopentadienyl tetracarbonyl diruthenium are a=11.03(2) Å, b=13.65(2) Å, c=11.609(2) Å, β=105.81(1)°, Z=4, space group P21/n (No. 14), Dx=2.135 mg/m3. The monoclinic cell parameters for λ-dimethylsilyl-dicyclopentadienyl-π, π′-tetracarbonyl diruthenium, are a=11.113(3) Å, b=13.60(1) Å, c=11.674(7) Å, and β=106.00(3)°, Z=4, space group P21/n (No. 14), and Dx=1.946 mg/m3. The cells found for the two compounds are in good agreement with those obtained from single crystal X-ray diffractometry.


1999 ◽  
Vol 14 (1) ◽  
pp. 42-44 ◽  
Author(s):  
A. V. Yatsenko ◽  
V. V. Chernyshev ◽  
H. Schenk

Powder diffraction data for 2-aminophenalenone at 295 K (P21/n, Z=4) are given, strong lines: 7.54/X, 7.26/9, 3.34/3. The cell parameters found are a=3.7213(3), b=16.550(2), c=15.095(2) Å, β=92.61(2)°. The crystal structure was determined using powder data and refined giving Rb=0.089. Disordered molecules form stacks along [100] with interplanar spacing of 3.48 Å.


1993 ◽  
Vol 8 (2) ◽  
pp. 107-108 ◽  
Author(s):  
G. Bandoli ◽  
A. Ongaro ◽  
F. Lotto ◽  
M. Rossi

X-ray powder diffraction of Nitrofurantoin C8H6N4O5 reveals that the compound crystallizes in a monoclinic unit cell with the powder data unit cell parameters of a = 7.852(2), b= 6.497(1), c = 18.927(5) Å, β=93.15(2)°, V=964.1(2) Å3. The unit cell dimensions determined by single crystal agree very well with those of powder diffraction analysis. A comparison with the Powder Diffraction File (PDF) 34-1603 indicates that the present data provide a more precise match to the unit cell, include additional weak reflections, along with the indexing of the powder pattern.


2013 ◽  
Vol 28 (S2) ◽  
pp. S491-S509 ◽  
Author(s):  
Fanny N. Costa ◽  
Fabio Furlan Ferreira ◽  
Tiago F. da Silva ◽  
Eliezer J. Barreiro ◽  
Lídia M. Lima ◽  
...  

Many N-acylhydrazone derivatives synthetized in LASSBio® cannot be prepared as single crystals of sufficient size and/or quality for structure determination to be carried out using single crystal X-ray diffraction techniques. This article highlights the opportunity for determining crystal structures of this class of compounds directly from powder diffraction data. For this task, the crystal structure of LASSBio-294 was re-determined by means of conventional X-ray powder diffraction data and so, compared with the crystal structure already determined for single crystal data. LASSBio-294 is a cardioactive compound of the N-acylhydrazone class, which can become part of the therapeutic interventions designed to decrease exertional fatigue, and, consequently, improve the quality of life of patients suffering from chronic heart failure. Its final crystal structure was refined by means of the Rietveld method (Rietveld, 1967; 1969). This drug crystallizes in a monoclinic (P21/c) space group, with unit cell parameters a = 11.3413(3) Å, b = 12.3573(4) Å, c = 9.0158(3) Å, β = 89.821(2)°, V = 1263.55(7) Å3, Z = 4, Ź = 1 and ρcalc = 1.4419(1) g cm−3. The goodness-of-fit indicator and R-factors were, respectively: χ2 = 1.203, RBragg = 0.696%, Rwp = 5.59%, Rexp = 4.65% and Rp = 4.18%. The molecules in LASSBio-294 are H-bonded along the c-axis involving the atoms N(3)–H(8)···O(4).


2006 ◽  
Vol 21 (3) ◽  
pp. 245-247 ◽  
Author(s):  
F. Needham ◽  
J. Faber ◽  
T. G. Fawcett ◽  
D. H. Olson

An experimental X-ray powder diffraction pattern was produced and analyzed for alpha-polymorphic tegafur, also called Ftorafur (an antineoplastic agent). The indexed data matched the powder patterns in the ICDD PDF-4/Organics database calculated from the reported single-crystal X-ray diffraction data in the Cambridge Structural Database. Alpha tegafur has a triclinic crystal system, with reduced cell parameters of a=16.720(6) Å, b=9.021(5) Å, c=5.995(3) Å, α=93.66(4)°, β=93.15(8)°, γ=100.14(4)°. There are four formula units contained in one unit cell. The cell volume and space group were determined to be 886.27 Å3 and P-1, respectively.


2001 ◽  
Vol 16 (3) ◽  
pp. 167-169 ◽  
Author(s):  
Yunxia Che ◽  
Jimin Zheng ◽  
Jianmin Hao ◽  
Lianqing Chu

Two adducts (NH2CH2COOH)3⋅H2BeF4(TGFb) and (NH2CH2COOH)3⋅H2SeO4(TGSe) were obtained and characterized by X-ray powder diffraction. The samples were indexed using the TREOR program [Werner, Z. Kristallogr. Kristallogeom. Kristallphys. Kristallchem. 120, 375–387 (1964)] on a monoclinic unit cell. The lattice parameters of adducts TGFb and TGSe were refined by a least-squares method using the Lattice Constant Refinement Program of the Rikagu software. The refined lattice parameters are a=9.1589(9) Å, b=12.6204(13) Å, c=5.6966(8) Å, β=105.451(9)° for TGFb. The Smith and Snyder figure [Smith and Snyder, J. Appl. Crystallogr. 12, 60–65 (1979)] is F30=39.4(0.0141,54). The refined lattice parameters a=9.5063(11) Å, b=12.8281(10) Å, c=5.8682(7) Å, β=110.353(77)° for TGSe. The Smith and Snyder figure is F30=39(0.0106,73). The powder diffraction results are in agreement with those obtained from single crystal structure data.


2001 ◽  
Vol 16 (4) ◽  
pp. 231-235
Author(s):  
Yu PuLan ◽  
Ding Shuang ◽  
Qiao Yuan Yuan ◽  
Yao XinKan ◽  
Zhang HaiYue ◽  
...  

X-ray powder diffraction data are reported for a series of multipyrazole compounds in this paper. This work shows that the unit cell dimensions determined by single crystal agree well with those of powder diffraction analysis.


2017 ◽  
Vol 81 (4) ◽  
pp. 917-922
Author(s):  
Peter Elliott

AbstractThe crystal structure of the copper aluminium phosphate mineral sieleckiite, Cu3Al4(PO4)2 (OH)12·2H2O, from the Mt Oxide copper mine, Queensland, Australia was solved from single-crystal X-ray diffraction data utilizing synchrotron radiation. Sieleckiite has monoclinic rather than triclinic symmetry as previously reported and is space group C2/m with unit-cell parameters a = 11.711(2), b = 6.9233(14), c = 9.828(2) Å, β = 92.88(3)°, V = 795.8(3) Å3and Z = 2. The crystal structure, which has been refined to R1 = 0.0456 on the basis of 1186 unique reflections with Fo > 4σF, is a framework of corner-, edge- and face- sharing Cu and Al octahedra and PO4 tetrahedra.


Sign in / Sign up

Export Citation Format

Share Document