scholarly journals Surface Ship Shock Modeling and Simulation: Two-Dimensional Analysis

1998 ◽  
Vol 5 (2) ◽  
pp. 129-137 ◽  
Author(s):  
Young S. Shin ◽  
Leonard D. Santiago

The modeling and simulation of the response of a surface ship system to underwater explosion requires an understanding of many different subject areas. These include the process of underwater explosion events, shock wave propagation, explosion gas bubble behavior and bubble-pulse loading, bulk and local cavitation, free surface effect, fluid-structure interaction, and structural dynamics. This paper investigates the effects of fluid-structure interaction and cavitation on the response of a surface ship using USA-NASTRAN-CFA code. First, the one-dimensional Bleich-Sandler model is used to validate the approach, and second, the underwater shock response of a two-dimensional mid-section model of a surface ship is predicted with a surrounding fluid model using a constitutive equation of a bilinear fluid which does not allow transmission of negative pressures.

1980 ◽  
Vol 102 (1) ◽  
pp. 56-61 ◽  
Author(s):  
C. M. Romander ◽  
L. E. Schwer ◽  
D. J. Cagliostro

Experiments are performed to verify modeling techniques used in fluid-structure interaction codes that predict the response of liquid-filled piping systems to strong pressure pulses. Pressure pulses having a 150-μs rise time, a 2000-psi (13.8 MPa) magnitude, and a 3-ms duration are propagated into straight, water-filled Ni 200 pipes (3-in. (7.6-cm) O.D. 0.065-in. (0.165-cm) wall). Attenuation of the pressure pulse and the strain and deformation along the pipes are measured. The experiments are modeled in WHAM, a two-dimensional, finite-element, compressible fluid-structure interaction code. The experimental and analytical results are discussed in detail and are found to compare favorably.


2000 ◽  
Vol 33 (9) ◽  
pp. 1079-1088 ◽  
Author(s):  
J. De Hart ◽  
G.W.M. Peters ◽  
P.J.G. Schreurs ◽  
F.P.T. Baaijens

Sign in / Sign up

Export Citation Format

Share Document