scholarly journals Hepatocellular Bile Salt Transport: Lessons from Cholestasis

2000 ◽  
Vol 14 (suppl d) ◽  
pp. 99D-104D ◽  
Author(s):  
Michael Trauner ◽  
Peter Fickert ◽  
Rudolf E Stauber

Hepatic uptake and excretion of bile salts and several nonbile salt organic anions (eg, bilirubin) are mediated by a distinct set of polarized transport systems at the basolateral and apical plasma membrane domains of hepatocytes and bile duct epithelial cells (cholangiocytes). With the increasing availability of molecular probes for these transporters, evidence now exists that decreased or even absent expression of hepatobiliary transport proteins in hepatocytes or cholangiocytes may explain impaired transport function that results in hyperbilirubinemia and cholestasis. This review summarizes the molecular defects in hepatocellular membrane transporters that are associated with hereditary and acquired forms of cholestatic liver disease.

2003 ◽  
Vol 83 (2) ◽  
pp. 633-671 ◽  
Author(s):  
Michael Trauner ◽  
James L. Boyer

Molecular medicine has led to rapid advances in the characterization of hepatobiliary transport systems that determine the uptake and excretion of bile salts and other biliary constituents in the liver and extrahepatic tissues. The bile salt pool undergoes an enterohepatic circulation that is regulated by distinct bile salt transport proteins, including the canalicular bile salt export pump BSEP (ABCB11), the ileal Na+-dependent bile salt transporter ISBT (SLC10A2), and the hepatic sinusoidal Na+- taurocholate cotransporting polypeptide NTCP (SLC10A1). Other bile salt transporters include the organic anion transporting polypeptides OATPs (SLC21A) and the multidrug resistance-associated proteins 2 and 3 MRP2,3 (ABCC2,3). Bile salt transporters are also present in cholangiocytes, the renal proximal tubule, and the placenta. Expression of these transport proteins is regulated by both transcriptional and posttranscriptional events, with the former involving nuclear hormone receptors where bile salts function as specific ligands. During bile secretory failure (cholestasis), bile salt transport proteins undergo adaptive responses that serve to protect the liver from bile salt retention and which facilitate extrahepatic routes of bile salt excretion. This review is a comprehensive summary of current knowledge of the molecular characterization, function, and regulation of bile salt transporters in normal physiology and in cholestatic liver disease and liver regeneration.


1982 ◽  
Vol 12 (1) ◽  
pp. 23-27 ◽  
Author(s):  
GEOFFREY J. BECKETT ◽  
IAIN W. PERCY-ROBB

2004 ◽  
Vol 33 (2) ◽  
pp. 287-293 ◽  
Author(s):  
Keith A. Hoffmaster ◽  
Maciej J. Zamek-Gliszczynski ◽  
Gary M. Pollack ◽  
Kim L. R. Brouwer

2001 ◽  
Vol 114 (7) ◽  
pp. 1331-1341 ◽  
Author(s):  
A.K. Criss ◽  
D.M. Ahlgren ◽  
T.S. Jou ◽  
B.A. McCormick ◽  
J.E. Casanova

The bacterial pathogen Salmonella typhimurium colonizes its animal hosts by inducing its internalization into intestinal epithelial cells. This process requires reorganization of the actin cytoskeleton of the apical plasma membrane into elaborate membrane ruffles that engulf the bacteria. Members of the Ρ family of small GTPases are critical regulators of actin structure, and in nonpolarized cells, the GTPase Cdc42 has been shown to modulate Salmonella entry. Because the actin architecture of epithelial cells is organized differently from that of nonpolarized cells, we examined the role of two ‘Rgr; family GTPases, Cdc42 and Rac1, in invasion of polarized monolayers of MDCK cells by S. typhimurium. Surprisingly, we found that endogenous Rac1, but not Cdc42, was activated during bacterial entry at the apical pole, and that this activation required the bacterial effector protein SopE. Furthermore, expression of dominant inhibitory Rac1 but not Cdc42 significantly inhibited apical internalization of Salmonella, indicating that Rac1 activation is integral to the bacterial entry process. In contrast, during basolateral internalization, both Cdc42 and Rac1 were activated; however, neither GTPase was required for entry. These findings, which differ significantly from previous observations in nonpolarized cells, indicate that the host cell signaling pathways activated by bacterial pathogens may vary with cell type, and in epithelial tissues may further differ between plasma membrane domains.


1993 ◽  
Vol 265 (1) ◽  
pp. G73-G80
Author(s):  
S. A. Weinman ◽  
R. P. Weeks

The importance of membrane voltage in uptake of bile salts into hepatocytes is not known. Electrogenicity of the primary bile salt transport process, Na-bile salt cotransport, has been difficult to determine because the large K and Cl conductances of the sinusoidal membrane (GK and GCl, respectively) obscure any transport associated currents. In the present study hepatocytes were treated to reduce these membrane conductances and electrogenic entry of taurocholate and glycocholate was demonstrated. Intracellular voltage and resistance changes resulting from bile salt transport were measured in hepatocytes in which GK and GCl were blocked by impalement with Na acetate microelectrodes and external exposure to quinine (400 microM). This increased the cell input resistance from 153 +/- 17 to 230 +/- 17 M omega (n = 14, P < 0.001). Under these conditions, exposure to 100 microM of taurocholate or glycocholate produced Na-dependent depolarizations of 3.0 +/- 0.5 and 4.2 +/- 0.8 mV, respectively. These correspond to transport currents of 13.9 and 7.6 pA/cell, which are comparable to those predicted from known [3H]taurocholate uptake rates if one positive charge enters the cell with each bile salt molecule. Although uptake of these two bile salts was electrogenic, this was not the case for all bile salts. Na-dependent transport of taurodehydrocholate, which occurs at similar rates to that for taurocholate, produced no voltage change. The unconjugated bile salts cholate and ursodeoxycholate also produced no measurable voltage or resistance changes. In conclusion, Na-dependent uptake of taurocholate and glycocholate is electrogenic, whereas uptake of taurodehydrocholate, ursodeoxycholate, and cholate is predominantly electroneutral.(ABSTRACT TRUNCATED AT 250 WORDS)


Sign in / Sign up

Export Citation Format

Share Document